Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo

Masataka Suwa, Toru Egashira, Hiroshi Nakano, Haruka Sasaki, Shuzo Kumagai

Research output: Contribution to journalArticle

140 Citations (Scopus)

Abstract

AMP-activated protein kinase (AMPK), which was activated by an antihyperglycemic drug metformin, has been hypothesized to mediate metabolic adaptations. The purposes of the present study were 1) to confirm whether acute metformin administration induced AMPK phosphorylation and 2) to determine whether chronic metformin treatment increased the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein expression, glycolytic and oxidative enzyme activities, and cytochrome c and glucose transporter-4 (GLUT4) protein expressions in the rat soleus and red and white gastrocnemius muscles. The single oral administration of metformin (300 mg/kg body wt) enhanced the AMPK phosphorylation at 5 and/or 6 h after treatment. In the chronic study, rats were fed either normal chow or chow containing 1% metformin for 14 days. Metformin treatment resulted in a mean daily metformin intake of 631 mg·kg body wt-1·day -1. Metformin increased the PGC-1α content in all three muscles. Metformin increased the hexokinase activity in the white gastrocnemius, the citrate synthase activity in all three muscles, and the β-hydroxyacyl-CoA dehydrogenase activity in the soleus. The cytochrome c protein content in the soleus muscle also increased. The GLUT4 content was unchanged by metformin. These results suggest that metformin enhances the PGC-1α expression and mitochondrial biogenesis possibly at least in part via AMPK phosphorylation in the skeletal muscle. Metformin has thus been proposed to possibly ameliorate insulin resistance, at least partially, by means of such metabolic effects.

Original languageEnglish
Pages (from-to)1685-1692
Number of pages8
JournalJournal of Applied Physiology
Volume101
Issue number6
DOIs
Publication statusPublished - Dec 2006

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo'. Together they form a unique fingerprint.

  • Cite this