Microstructure and mechanical properties of Zr-Co-Ni intermetallic compound

Mitsuhiro Matsuda, Katsutoshi Hayashi, Minoru Nishida

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The relationship between the microstructure and mechanical properties on the ternary ZrCoNi alloys has been investigated. Zr50Co 50-xNix alloys undergo martensitic transformation from the B2 to B33 structure by the substitution of Ni for Co. The tensile ductility at room temperature increases remarkably without the loss of yield strength by substituting Ni. Zr50Co39Ni11 alloy has the extremely high plastic elongation of 21%. There are many {021}B33 deformation twins in the B2 parent phase just near the tensile fractured area. These twins are the strain induced martensitic phase due to the tensile deformation. Consequently, the remarkable improvement of the ductility of ZrCoNi alloys is due to the transformation induced plasticity.

Original languageEnglish
Title of host publicationTHERMEC 2009
EditorsTara Chandra, Tara Chandra, Tara Chandra, N. Wanderka, N. Wanderka, N. Wanderka, Walter Reimers, Walter Reimers, Walter Reimers, M. Ionescu, M. Ionescu, M. Ionescu
PublisherTrans Tech Publications Ltd
Pages1379-1383
Number of pages5
ISBN (Print)0878492941, 9780878492947
DOIs
Publication statusPublished - 2010
Event6th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC'2009 - Berlin, Germany
Duration: Aug 25 2009Aug 29 2009

Publication series

NameMaterials Science Forum
Volume638-642
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other6th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC'2009
CountryGermany
CityBerlin
Period8/25/098/29/09

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Microstructure and mechanical properties of Zr-Co-Ni intermetallic compound'. Together they form a unique fingerprint.

Cite this