Microstructure evolution in ferritic stainless steels during large strain deformation

Andrey Belyakov, Yuuji Kimura, Yoshitaka Adachi, Kaneaki Tsuzaki

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Deformation microstructures were studied in ferritic stainless steels during cold bar rolling and swaging to total true strains about 7. Two steels, i.e. Fe-22Cr-3Ni and Fe-18Cr-7Ni with coarse-grained ferritic and fine-grained martensitic initial microstructures, respectively, were selected as starting materials. Microstructure evolution in the both steels was characterized by the development of highly elongated (sub)grains aligned along the rolling/swaging axis. The transverse size of these (sub)grains in the Fe-22Cr-3Ni steel gradually decreased to about 0.1 μm with increasing the strain. On the other hand, the transverse (sub)grain size in the Fe-18Cr-7Ni steel decreased to its minimal value of 0.07 μm with straining to about 3 followed by a little coarsening under further working. The strengthening of worked steels that revealed by hardness tests correlated with the microstructure evolution. The hardness of the Fe-22Cr-3Ni steel increased with cold working within the studied strain range, while that of the Fe-18Cr-7Ni approached a saturation after fast work hardening at strains below 3, leading to an apparent steady-state behaviour. Development of strain-induced (sub)grain boundaries and internal stresses in the steels with different initial microstructures during severe deformation is discussed in some detail.

Original languageEnglish
Pages (from-to)2812-2821
Number of pages10
JournalMaterials Transactions
Volume45
Issue number9
DOIs
Publication statusPublished - Sep 2004
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this