Abstract
Resonance magnetoabsorption spectra of CuGeO3 single crystals containing 2% Co impurity have been studied in the frequency range 60-360 GHz in magnetic fields of up to 16 T and in the temperature interval 2-60 K with the magnetic field B aligned parallel to the a crystallographic axis. In addition to the Cu2+ chain resonance, a new absorption line (unobserved previously in doped CuGeO3 and deriving apparently from the Co 2+ ions) was detected in EPR spectra. Quantitative analysis of the spectra suggests that the spin-Peierls transition occurs in about 10% Cu 2+ chains, while the spin-Peierls state in the remaining 90% chains is completely destroyed by cobalt doping. The results obtained reveal considerable deviations from the universally accepted scenario of CuGeO 3 doping and are discussed within alternative theoretical models, namely, the quantum critical behavior (based on the EPR theory for quasi-one-dimensional systems) and a three-dimensional antiferromagnet with the Néel temperature lowered by disorder.
Original language | English |
---|---|
Pages (from-to) | 2238-2248 |
Number of pages | 11 |
Journal | Physics of the Solid State |
Volume | 46 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2004 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics