TY - JOUR
T1 - Mitochondrial phosphatidylethanolamine synthesis affects mitochondrial energy metabolism and quiescence entry through attenuation of Snf1/AMPK signaling in yeast
AU - Miyata, Non
AU - Ito, Takanori
AU - Nakashima, Miyu
AU - Fujii, Satoru
AU - Kuge, Osamu
N1 - Publisher Copyright:
© 2022 Federation of American Societies for Experimental Biology.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - The Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1. Inactivation of Snf1 by depletion of an Snf1-activating kinase, Sak1 canceled the changes in mitochondrial ATP production and quiescence entry observed in ups2∆ cells. Furthermore, among the factors regulated by Snf1, upregulation of pyruvate carboxylase, Pyc1 and downregulation of acetyl-CoA carboxylase, Acc1, respectively, were sufficient to increase mitochondrial ATP production and quiescence entry. These results suggested that a normal PE synthesis mediated by Ups2-Mdm35 complex attenuates Snf1/AMPK activity, and that Snf1-mediated regulation of carbon metabolisms has great impacts on mitochondrial energy metabolism and quiescence entry. We also found that depletion of Ups2 together with the cell-cycle regulators Whi5 and Whi7, functional orthologs of the Rb1 tumor suppressor, caused a synthetic growth defect in yeast. Similarly, knockdown of PRELID3b, the human homolog of Ups2, decreased the viability of Rb1-deficient breast cancer cells, suggesting that PRELID3b is a potential target for cancer therapy.
AB - The Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1. Inactivation of Snf1 by depletion of an Snf1-activating kinase, Sak1 canceled the changes in mitochondrial ATP production and quiescence entry observed in ups2∆ cells. Furthermore, among the factors regulated by Snf1, upregulation of pyruvate carboxylase, Pyc1 and downregulation of acetyl-CoA carboxylase, Acc1, respectively, were sufficient to increase mitochondrial ATP production and quiescence entry. These results suggested that a normal PE synthesis mediated by Ups2-Mdm35 complex attenuates Snf1/AMPK activity, and that Snf1-mediated regulation of carbon metabolisms has great impacts on mitochondrial energy metabolism and quiescence entry. We also found that depletion of Ups2 together with the cell-cycle regulators Whi5 and Whi7, functional orthologs of the Rb1 tumor suppressor, caused a synthetic growth defect in yeast. Similarly, knockdown of PRELID3b, the human homolog of Ups2, decreased the viability of Rb1-deficient breast cancer cells, suggesting that PRELID3b is a potential target for cancer therapy.
UR - http://www.scopus.com/inward/record.url?scp=85131167248&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131167248&partnerID=8YFLogxK
U2 - 10.1096/fj.202101600RR
DO - 10.1096/fj.202101600RR
M3 - Article
C2 - 35639425
AN - SCOPUS:85131167248
SN - 0892-6638
VL - 36
SP - e22355
JO - FASEB Journal
JF - FASEB Journal
IS - 7
ER -