Modeling carbon black aggregate structure and ionomer coat for optimum design of PEFC catalyst layer

Gen Inoue, Yun Peng Fan, Takahiro Matsuoka, Yosuke Matsukuma, Masaki Minemoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In present Polymer Electrolyte Fuel Cell (PEFC), the cathode oxygen reduction reaction (ORR) is dominant at high current density condition. In order to accelerate this reaction, oxygen, proton and electron, which move in void space, ionomer and carbon black (CB) or CNT respectively, have to be transferred at Pt surface smoothly. Accordingly, it is very important to know the transport phenomena in catalyst layer (CL) to design the optimum structure and to develop new materials. In order to investigate the transport phenomena in CL by applying calculation technique, in this study, heterogeneous CB aggregate structure was simulated by computer calculation as the first examination. In addition, ionomer coating condition and proton conductivity were examined. Furthermore oxygen, proton and electron transfer in 3D porous catalyst layer were calculated, and the effective reaction field was examined in various structure and ionomer condition.

Original languageEnglish
Title of host publicationASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
Pages3579-3584
Number of pages6
EditionPARTS A, B, C, D
DOIs
Publication statusPublished - Dec 1 2011
EventASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011 - Hamamatsu, Japan
Duration: Jul 24 2011Jul 29 2011

Publication series

NameASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
NumberPARTS A, B, C, D
Volume1

Other

OtherASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
Country/TerritoryJapan
CityHamamatsu
Period7/24/117/29/11

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Modeling carbon black aggregate structure and ionomer coat for optimum design of PEFC catalyst layer'. Together they form a unique fingerprint.

Cite this