TY - JOUR
T1 - Modulation of GABAA receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition
AU - Kanematsu, Takashi
AU - Yasunaga, Atsushi
AU - Mizoguchi, Yoshito
AU - Kuratani, Akiko
AU - Kittler, Josef T.
AU - Jovanovic, Jasmina N.
AU - Takenaka, Kei
AU - Nakayama, Keiichi I.
AU - Fukami, Kiyoko
AU - Takenawa, Tadaomi
AU - Moss, Stephen J.
AU - Nabekura, Junichi
AU - Hirata, Masato
PY - 2006/8/4
Y1 - 2006/8/4
N2 - Brain-derived neurotrophic factor (BDNF) modulates several distinct aspects of synaptic transmission, including GABAergic transmission. Exposure to BDNF alters properties of GABAA receptors and induces changes in the expression level at the cell surface. Although phospholipase C-related inactive protein-1 (PRIP-1) plays an important role in GABAA receptor trafficking and function, its role in BDNF-dependent modulation of these receptors, together with the role of PRIP-2, was investigated using neurons cultured from PRIP double knock-out mice. The BDNF-dependent inhibition of whole cell GABA-evoked currents observed in wild type neurons was not detected in neurons cultured from knock-out mice. Instead, a gradual increase in GABA-evoked currents in these neurons correlated with a gradual increase in phosphorylation of GABAA receptor β3 subunit in response to BDNF. To characterize the specific role(s) that PRIP plays as components of underlying molecular machinery, we examined the recruitment of protein phosphatase(s) to GABAA receptors. We demonstrate that PRIP associates with phosphatases as well as with β subunits. PRIP was found to colocalize with GABAA receptor clusters in cultured neurons and with recombinant GABAA receptors when co-expressed in HEK293 cells. Importantly, a peptide mimicking a domain of PRIP involved in binding to β subunits disrupted the co-localization of these proteins in HEK293 cells and potently inhibited the BDNF-mediated attenuation of GABAA receptor currents in wild type neurons. Together, the results suggest that PRIP plays an important role in BDNF-dependent regulation of GABAA receptors by mediating the specific association between β subunits of these receptors with protein phosphatases.
AB - Brain-derived neurotrophic factor (BDNF) modulates several distinct aspects of synaptic transmission, including GABAergic transmission. Exposure to BDNF alters properties of GABAA receptors and induces changes in the expression level at the cell surface. Although phospholipase C-related inactive protein-1 (PRIP-1) plays an important role in GABAA receptor trafficking and function, its role in BDNF-dependent modulation of these receptors, together with the role of PRIP-2, was investigated using neurons cultured from PRIP double knock-out mice. The BDNF-dependent inhibition of whole cell GABA-evoked currents observed in wild type neurons was not detected in neurons cultured from knock-out mice. Instead, a gradual increase in GABA-evoked currents in these neurons correlated with a gradual increase in phosphorylation of GABAA receptor β3 subunit in response to BDNF. To characterize the specific role(s) that PRIP plays as components of underlying molecular machinery, we examined the recruitment of protein phosphatase(s) to GABAA receptors. We demonstrate that PRIP associates with phosphatases as well as with β subunits. PRIP was found to colocalize with GABAA receptor clusters in cultured neurons and with recombinant GABAA receptors when co-expressed in HEK293 cells. Importantly, a peptide mimicking a domain of PRIP involved in binding to β subunits disrupted the co-localization of these proteins in HEK293 cells and potently inhibited the BDNF-mediated attenuation of GABAA receptor currents in wild type neurons. Together, the results suggest that PRIP plays an important role in BDNF-dependent regulation of GABAA receptors by mediating the specific association between β subunits of these receptors with protein phosphatases.
UR - http://www.scopus.com/inward/record.url?scp=33746798086&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746798086&partnerID=8YFLogxK
U2 - 10.1074/jbc.M603118200
DO - 10.1074/jbc.M603118200
M3 - Article
C2 - 16754670
AN - SCOPUS:33746798086
SN - 0021-9258
VL - 281
SP - 22180
EP - 22189
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 31
ER -