TY - JOUR
T1 - Molecular cloning and expression of Mn2+-dependent sphingomyelinase/hemolysin of an aquatic bacterium, pseudomonas sp. strain TK4
AU - Sueyoshi, N.
AU - Kita, K.
AU - Okino, N.
AU - Sakaguchi, Keishi
AU - Nakamura, T.
AU - Ito, Makoto
PY - 2002
Y1 - 2002
N2 - We report here the molecular cloning and expression of a hemolytic sphingomyelinase from an aquatic bacterium, Pseudomonas sp. strain TK4. The sphingomyelinase gene was found to consist of 1,548 nucleotides encoding 516 amino acid residues. The recombinant 57.7-kDa enzyme hydrolyzed sphingomyelin but not phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, or phosphatidylethanolamine, indicating that the enzyme is a sphingomyelin-specific sphingomyelinase C. The hydrolysis of sphingomyelin by the enzyme was found to be most efficient at pH 8.0 and activated by Mn2+. The enzyme shows quite a broad specificity, i.e., it hydrolyzed 4-nitrobenz-2-oxa-1,3-diazole (NBD)-sphingomyelin with short-chain fatty acids and NBD-sphingosylphosphorylcholine, the latter being completely resistant to hydrolysis by any sphingomyelinase reported so far. Significant sequence similarities were found in sphingomyelinases from Bacillus cereus, Staphylococcus aureus, Listeria ivanovii, and Leptospira interrogans, as well as a hypothetical protein encoded in Chromobacterium violaceum, although the first three lacked one-third of the sequence corresponding to that from the C terminus of the TK4 enzyme. Interestingly, the deletion mutant of strain TK4 lacking 186 amino acids at the C-terminal end hydrolyzed sphingomyelin, whereas it lost all hemolytic activity, indicating that the C-terminal region of the TK4 enzyme is indispensable for the hemolytic activity.
AB - We report here the molecular cloning and expression of a hemolytic sphingomyelinase from an aquatic bacterium, Pseudomonas sp. strain TK4. The sphingomyelinase gene was found to consist of 1,548 nucleotides encoding 516 amino acid residues. The recombinant 57.7-kDa enzyme hydrolyzed sphingomyelin but not phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, or phosphatidylethanolamine, indicating that the enzyme is a sphingomyelin-specific sphingomyelinase C. The hydrolysis of sphingomyelin by the enzyme was found to be most efficient at pH 8.0 and activated by Mn2+. The enzyme shows quite a broad specificity, i.e., it hydrolyzed 4-nitrobenz-2-oxa-1,3-diazole (NBD)-sphingomyelin with short-chain fatty acids and NBD-sphingosylphosphorylcholine, the latter being completely resistant to hydrolysis by any sphingomyelinase reported so far. Significant sequence similarities were found in sphingomyelinases from Bacillus cereus, Staphylococcus aureus, Listeria ivanovii, and Leptospira interrogans, as well as a hypothetical protein encoded in Chromobacterium violaceum, although the first three lacked one-third of the sequence corresponding to that from the C terminus of the TK4 enzyme. Interestingly, the deletion mutant of strain TK4 lacking 186 amino acids at the C-terminal end hydrolyzed sphingomyelin, whereas it lost all hemolytic activity, indicating that the C-terminal region of the TK4 enzyme is indispensable for the hemolytic activity.
UR - http://www.scopus.com/inward/record.url?scp=0036134945&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036134945&partnerID=8YFLogxK
U2 - 10.1128/JB.184.2.540-546.2002
DO - 10.1128/JB.184.2.540-546.2002
M3 - Article
C2 - 11751833
AN - SCOPUS:0036134945
SN - 0021-9193
VL - 184
SP - 540
EP - 546
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 2
ER -