TY - JOUR
T1 - Molecular clutch drives cell response to surface viscosity
AU - Bennett, Mark
AU - Cantini, Marco
AU - Reboud, Julien
AU - Cooper, Jonathan M.
AU - Roca-Cusachs, Pere
AU - Salmeron-Sanchez, Manuel
N1 - Funding Information:
ACKNOWLEDGMENTS. This work was supported by European Research Council HealInSynergy Grant 306990 and Engineering and Physical Sciences Research Council Grants EP/P001114/1 and EP/F500424/1, the Spanish Ministry of Economy and Competitiveness (Grant BFU2016-79916-P), the European Commission (Grant Agreement SEP-210342844), the Generalitat de Catalunya (Grant 2014-SGR-927), and Obra Social “La Caixa.”.
PY - 2018/2/6
Y1 - 2018/2/6
N2 - Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system throughwhich to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.
AB - Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system throughwhich to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.
UR - http://www.scopus.com/inward/record.url?scp=85041504353&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041504353&partnerID=8YFLogxK
U2 - 10.1073/pnas.1710653115
DO - 10.1073/pnas.1710653115
M3 - Article
C2 - 29358406
AN - SCOPUS:85041504353
SN - 0027-8424
VL - 115
SP - 1192
EP - 1197
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 6
ER -