TY - JOUR
T1 - Molecular Mechanism and Role of Endothelial Monocyte Chemoattractant Protein-1 Induction by Vascular Endothelial Growth Factor
AU - Yamada, Motoko
AU - Kim, Shokei
AU - Egashira, Kensuke
AU - Takeya, Motohiro
AU - Ikeda, Tomohiro
AU - Mimura, Osamu
AU - Iwao, Hiroshi
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2003/11
Y1 - 2003/11
N2 - Objective - We investigated the role of monocyte chemoattractant protein-1 (MCP-1) in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular permeability and the underlying molecular mechanism of VEGF-induced endothelial MCP-1 expression in vitro and in vivo. Methods and Results - We used an anti-MCP-1 neutralizing antibody for specific inhibition of MCP-1. VEGF increased tubule formation in the angiogenesis assay and vascular permeability in the Miles assay, and these effects were markedly inhibited by anti-MCP-1 antibody. Using a luciferase MCP-1 promoter-gene assay, we found that the activator protein-1 (AP-1) binding site of the MCP-1 promoter region contributes to the increase in MCP-1 promoter activity by VEGF. To specifically inhibit AP-1, we used recombinant adenovirus containing a dominant-negative c-Jun (Ad-DN-c-Jun). Ad-DN-c-Jun inhibited VEGF-induced endothelial MCP-1 mRNA expression and promoter activity in vitro. In vivo gene transfer of DN-c-Jun into rat carotid artery, with the hemagglutinating virus of the Japan liposome method, significantly blocked VEGF-induced MCP-1 and macrophage/monocyte (ED1) expression in endothelium. Conclusions - These results reveal that endothelial MCP-1 induced by VEGF seems to participate in angiogenesis, vascular leakage, or arteriosclerosis. AP-1 plays a critical role in the molecular mechanism underlying induction of MCP-1 by VEGF.
AB - Objective - We investigated the role of monocyte chemoattractant protein-1 (MCP-1) in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular permeability and the underlying molecular mechanism of VEGF-induced endothelial MCP-1 expression in vitro and in vivo. Methods and Results - We used an anti-MCP-1 neutralizing antibody for specific inhibition of MCP-1. VEGF increased tubule formation in the angiogenesis assay and vascular permeability in the Miles assay, and these effects were markedly inhibited by anti-MCP-1 antibody. Using a luciferase MCP-1 promoter-gene assay, we found that the activator protein-1 (AP-1) binding site of the MCP-1 promoter region contributes to the increase in MCP-1 promoter activity by VEGF. To specifically inhibit AP-1, we used recombinant adenovirus containing a dominant-negative c-Jun (Ad-DN-c-Jun). Ad-DN-c-Jun inhibited VEGF-induced endothelial MCP-1 mRNA expression and promoter activity in vitro. In vivo gene transfer of DN-c-Jun into rat carotid artery, with the hemagglutinating virus of the Japan liposome method, significantly blocked VEGF-induced MCP-1 and macrophage/monocyte (ED1) expression in endothelium. Conclusions - These results reveal that endothelial MCP-1 induced by VEGF seems to participate in angiogenesis, vascular leakage, or arteriosclerosis. AP-1 plays a critical role in the molecular mechanism underlying induction of MCP-1 by VEGF.
UR - http://www.scopus.com/inward/record.url?scp=0242721960&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242721960&partnerID=8YFLogxK
U2 - 10.1161/01.ATV.0000096208.80992.63
DO - 10.1161/01.ATV.0000096208.80992.63
M3 - Article
C2 - 14500291
AN - SCOPUS:0242721960
VL - 23
SP - 1996
EP - 2001
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
SN - 1079-5642
IS - 11
ER -