Molecular mechanism of the flexible glycan receptor recognition by mumps virus

Marie Kubota, Rei Matsuoka, Tateki Suzuki, Koji Yonekura, Yusuke Yanagi, Takao Hashiguchi

Research output: Contribution to journalArticle

Abstract

Mumps virus (MuV) is an important aerosol-transmitted human pathogen causing epidemic parotitis, meningitis, encephalitis, and deafness. MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid as a receptor. However, given the MuV tropism toward glandular tissues and the central nervous system, an additional glycan motif(s) may also serve as a receptor. Here, we performed a large-scale glycan array screen with MuV hemagglutinin-neuraminidase (MuV-HN) attachment proteins by using 600 types of glycans from The Consortium for Functional Glycomics Protein-Glycan Interaction Core in an effort to find new glycan receptor motif(s). According to the results of the glycan array, we successfully determined the crystal structures of MuV-HN proteins bound to newly identified glycan motifs, sialyl Lewisx (SLex) and the oligosaccharide portion of the GM2 ganglioside (GM2-glycan). Interestingly, the complex structures showed that SLex and GM2-glycan share the same configuration with the reported trisaccharide motif, 3'-sialyllactose (3'-SL), at the binding site of MuV-HN, while SLex and GM2-glycan have several unique interactions compared with those of 3'-SL. Thus, MuV-HN protein can allow an additional spatial modification in GM2-glycan and SLex at the second and third carbohydrates from the nonreducing terminus of the core trisaccharide structure, respectively. Importantly, MuV entry was efficiently inhibited in the presence of 3'-SL, SLex, or GM2-glycan derivatives, which indicates that these motifs can serve as MuV receptors. The α2,3-sialylated oligosaccharides, such as SLex and 3'-sialyllactosamine, are broadly expressed in various tissues, and GM2 exists mainly in neural tissues and the adrenal gland. The distribution of these glycan motifs in human tissues/organs may have bearing on MuV tropism. IMPORTANCE Mumps virus (MuV) infection is characterized by parotid gland swelling and can cause pancreatitis, orchitis, meningitis, and encephalitis. MuV-related hearing loss is also a serious complication because it is usually irreversible. MuV outbreaks have been reported in many countries, even in high-vaccine-coverage areas. MuV has tropism toward glandular tissues and the central nervous system. To understand the unique MuV tropism, revealing the mechanism of receptor recognition by MuV is very important. Here, using a large-scale glycan array and X-ray crystallography, we show that MuV recognizes sialyl Lewisx and GM2 ganglioside as receptors, in addition to a previously reported MuV receptor, a trisaccharide containing an α2,3-linked sialic acid. The flexible recognition of these glycan receptors by MuV may explain the unique tropism and pathogenesis of MuV. Structures will also provide a template for the development of effective entry inhibitors targeting the receptor-binding site of MuV.

Original languageEnglish
Article numbere00344-19
JournalJournal of virology
Volume93
Issue number15
DOIs
Publication statusPublished - Jan 1 2019

Fingerprint

Mumps virus
Polysaccharides
polysaccharides
receptors
tropisms
Tropism
trisaccharides
Trisaccharides
HN Protein
Virus Receptors
gangliosides
sialic acids
meningitis
N-Acetylneuraminic Acid
Encephalitis
encephalitis
Oligosaccharides
Meningitis
oligosaccharides
central nervous system

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this

Molecular mechanism of the flexible glycan receptor recognition by mumps virus. / Kubota, Marie; Matsuoka, Rei; Suzuki, Tateki; Yonekura, Koji; Yanagi, Yusuke; Hashiguchi, Takao.

In: Journal of virology, Vol. 93, No. 15, e00344-19, 01.01.2019.

Research output: Contribution to journalArticle

Kubota, Marie ; Matsuoka, Rei ; Suzuki, Tateki ; Yonekura, Koji ; Yanagi, Yusuke ; Hashiguchi, Takao. / Molecular mechanism of the flexible glycan receptor recognition by mumps virus. In: Journal of virology. 2019 ; Vol. 93, No. 15.
@article{7d7f80b790ee4972baae7eb7302d40c2,
title = "Molecular mechanism of the flexible glycan receptor recognition by mumps virus",
abstract = "Mumps virus (MuV) is an important aerosol-transmitted human pathogen causing epidemic parotitis, meningitis, encephalitis, and deafness. MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid as a receptor. However, given the MuV tropism toward glandular tissues and the central nervous system, an additional glycan motif(s) may also serve as a receptor. Here, we performed a large-scale glycan array screen with MuV hemagglutinin-neuraminidase (MuV-HN) attachment proteins by using 600 types of glycans from The Consortium for Functional Glycomics Protein-Glycan Interaction Core in an effort to find new glycan receptor motif(s). According to the results of the glycan array, we successfully determined the crystal structures of MuV-HN proteins bound to newly identified glycan motifs, sialyl Lewisx (SLex) and the oligosaccharide portion of the GM2 ganglioside (GM2-glycan). Interestingly, the complex structures showed that SLex and GM2-glycan share the same configuration with the reported trisaccharide motif, 3'-sialyllactose (3'-SL), at the binding site of MuV-HN, while SLex and GM2-glycan have several unique interactions compared with those of 3'-SL. Thus, MuV-HN protein can allow an additional spatial modification in GM2-glycan and SLex at the second and third carbohydrates from the nonreducing terminus of the core trisaccharide structure, respectively. Importantly, MuV entry was efficiently inhibited in the presence of 3'-SL, SLex, or GM2-glycan derivatives, which indicates that these motifs can serve as MuV receptors. The α2,3-sialylated oligosaccharides, such as SLex and 3'-sialyllactosamine, are broadly expressed in various tissues, and GM2 exists mainly in neural tissues and the adrenal gland. The distribution of these glycan motifs in human tissues/organs may have bearing on MuV tropism. IMPORTANCE Mumps virus (MuV) infection is characterized by parotid gland swelling and can cause pancreatitis, orchitis, meningitis, and encephalitis. MuV-related hearing loss is also a serious complication because it is usually irreversible. MuV outbreaks have been reported in many countries, even in high-vaccine-coverage areas. MuV has tropism toward glandular tissues and the central nervous system. To understand the unique MuV tropism, revealing the mechanism of receptor recognition by MuV is very important. Here, using a large-scale glycan array and X-ray crystallography, we show that MuV recognizes sialyl Lewisx and GM2 ganglioside as receptors, in addition to a previously reported MuV receptor, a trisaccharide containing an α2,3-linked sialic acid. The flexible recognition of these glycan receptors by MuV may explain the unique tropism and pathogenesis of MuV. Structures will also provide a template for the development of effective entry inhibitors targeting the receptor-binding site of MuV.",
author = "Marie Kubota and Rei Matsuoka and Tateki Suzuki and Koji Yonekura and Yusuke Yanagi and Takao Hashiguchi",
year = "2019",
month = "1",
day = "1",
doi = "10.1128/JVI.00344-19",
language = "English",
volume = "93",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "15",

}

TY - JOUR

T1 - Molecular mechanism of the flexible glycan receptor recognition by mumps virus

AU - Kubota, Marie

AU - Matsuoka, Rei

AU - Suzuki, Tateki

AU - Yonekura, Koji

AU - Yanagi, Yusuke

AU - Hashiguchi, Takao

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Mumps virus (MuV) is an important aerosol-transmitted human pathogen causing epidemic parotitis, meningitis, encephalitis, and deafness. MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid as a receptor. However, given the MuV tropism toward glandular tissues and the central nervous system, an additional glycan motif(s) may also serve as a receptor. Here, we performed a large-scale glycan array screen with MuV hemagglutinin-neuraminidase (MuV-HN) attachment proteins by using 600 types of glycans from The Consortium for Functional Glycomics Protein-Glycan Interaction Core in an effort to find new glycan receptor motif(s). According to the results of the glycan array, we successfully determined the crystal structures of MuV-HN proteins bound to newly identified glycan motifs, sialyl Lewisx (SLex) and the oligosaccharide portion of the GM2 ganglioside (GM2-glycan). Interestingly, the complex structures showed that SLex and GM2-glycan share the same configuration with the reported trisaccharide motif, 3'-sialyllactose (3'-SL), at the binding site of MuV-HN, while SLex and GM2-glycan have several unique interactions compared with those of 3'-SL. Thus, MuV-HN protein can allow an additional spatial modification in GM2-glycan and SLex at the second and third carbohydrates from the nonreducing terminus of the core trisaccharide structure, respectively. Importantly, MuV entry was efficiently inhibited in the presence of 3'-SL, SLex, or GM2-glycan derivatives, which indicates that these motifs can serve as MuV receptors. The α2,3-sialylated oligosaccharides, such as SLex and 3'-sialyllactosamine, are broadly expressed in various tissues, and GM2 exists mainly in neural tissues and the adrenal gland. The distribution of these glycan motifs in human tissues/organs may have bearing on MuV tropism. IMPORTANCE Mumps virus (MuV) infection is characterized by parotid gland swelling and can cause pancreatitis, orchitis, meningitis, and encephalitis. MuV-related hearing loss is also a serious complication because it is usually irreversible. MuV outbreaks have been reported in many countries, even in high-vaccine-coverage areas. MuV has tropism toward glandular tissues and the central nervous system. To understand the unique MuV tropism, revealing the mechanism of receptor recognition by MuV is very important. Here, using a large-scale glycan array and X-ray crystallography, we show that MuV recognizes sialyl Lewisx and GM2 ganglioside as receptors, in addition to a previously reported MuV receptor, a trisaccharide containing an α2,3-linked sialic acid. The flexible recognition of these glycan receptors by MuV may explain the unique tropism and pathogenesis of MuV. Structures will also provide a template for the development of effective entry inhibitors targeting the receptor-binding site of MuV.

AB - Mumps virus (MuV) is an important aerosol-transmitted human pathogen causing epidemic parotitis, meningitis, encephalitis, and deafness. MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid as a receptor. However, given the MuV tropism toward glandular tissues and the central nervous system, an additional glycan motif(s) may also serve as a receptor. Here, we performed a large-scale glycan array screen with MuV hemagglutinin-neuraminidase (MuV-HN) attachment proteins by using 600 types of glycans from The Consortium for Functional Glycomics Protein-Glycan Interaction Core in an effort to find new glycan receptor motif(s). According to the results of the glycan array, we successfully determined the crystal structures of MuV-HN proteins bound to newly identified glycan motifs, sialyl Lewisx (SLex) and the oligosaccharide portion of the GM2 ganglioside (GM2-glycan). Interestingly, the complex structures showed that SLex and GM2-glycan share the same configuration with the reported trisaccharide motif, 3'-sialyllactose (3'-SL), at the binding site of MuV-HN, while SLex and GM2-glycan have several unique interactions compared with those of 3'-SL. Thus, MuV-HN protein can allow an additional spatial modification in GM2-glycan and SLex at the second and third carbohydrates from the nonreducing terminus of the core trisaccharide structure, respectively. Importantly, MuV entry was efficiently inhibited in the presence of 3'-SL, SLex, or GM2-glycan derivatives, which indicates that these motifs can serve as MuV receptors. The α2,3-sialylated oligosaccharides, such as SLex and 3'-sialyllactosamine, are broadly expressed in various tissues, and GM2 exists mainly in neural tissues and the adrenal gland. The distribution of these glycan motifs in human tissues/organs may have bearing on MuV tropism. IMPORTANCE Mumps virus (MuV) infection is characterized by parotid gland swelling and can cause pancreatitis, orchitis, meningitis, and encephalitis. MuV-related hearing loss is also a serious complication because it is usually irreversible. MuV outbreaks have been reported in many countries, even in high-vaccine-coverage areas. MuV has tropism toward glandular tissues and the central nervous system. To understand the unique MuV tropism, revealing the mechanism of receptor recognition by MuV is very important. Here, using a large-scale glycan array and X-ray crystallography, we show that MuV recognizes sialyl Lewisx and GM2 ganglioside as receptors, in addition to a previously reported MuV receptor, a trisaccharide containing an α2,3-linked sialic acid. The flexible recognition of these glycan receptors by MuV may explain the unique tropism and pathogenesis of MuV. Structures will also provide a template for the development of effective entry inhibitors targeting the receptor-binding site of MuV.

UR - http://www.scopus.com/inward/record.url?scp=85070056053&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070056053&partnerID=8YFLogxK

U2 - 10.1128/JVI.00344-19

DO - 10.1128/JVI.00344-19

M3 - Article

C2 - 31118251

AN - SCOPUS:85070056053

VL - 93

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 15

M1 - e00344-19

ER -