Molecular phylogeny of kinorhynchs

Hiroshi Yamasaki, Shimpei F. Hiruta, Hiroshi Kajihara

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

We reconstructed kinorhynch phylogeny using maximum-likelihood and Bayesian analyses of nuclear 18S and 28S rRNA gene sequences from 30 species in 13 genera (18S) and 23 species in 12 genera (28S), representing eight families and both orders (Cyclorhagida and Homalorhagida) currently recognized in the phylum. We analyzed the two genes individually (18S and 28S datasets) and in combination (18S. +. 28S dataset). We detected four main clades (I-IV). Clade I consisted of family Echinoderidae. Clade II contained representatives of Zelinkaderidae, Antygomonidae, Semnoderidae, Centroderes, and Condyloderes, the latter two currently classified in Centroderidae; within Clade II, Zelinkaderidae, Antygomonidae, and Semnoderidae comprised a clade with strong nodal support. Clade III contained only two species in Campyloderes, also currently classified in the Centroderidae, indicating polyphyly for this family. Clades I-III, containing all representatives of Cyclorhagida included in the analysis except for Dracoderes abei, formed a clade with high nodal support in the 28S and 18S. +. 28S trees. Clade IV, resolved in the 18S and 18S. +. 28S trees with high nodal support, contained only species in order Homalorhagida, with the exception of the cyclorhagid Dracoderes abei. Order Cyclorhagida as it currently stands is thus polyphyletic, and order Homalorhagida paraphyletic. Our results indicate that Dracoderidae has been misplaced in Cyclorhagida based on homoplasious characters. Our analyses did not resolve the relationships among Clades I-III within Cyclorhagida. Neither gene alone nor the combined dataset resolved all nodes in trees, indicating that additional markers will be needed to reconstruct kinorhynch phylogeny.

Original languageEnglish
Pages (from-to)303-310
Number of pages8
JournalMolecular Phylogenetics and Evolution
Volume67
Issue number2
DOIs
Publication statusPublished - May 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Molecular phylogeny of kinorhynchs'. Together they form a unique fingerprint.

Cite this