Mono-, Di-, and Tricarboxylic Acid Facilitated Lanthanum-Based Organic Frameworks: Insights into the Structural Stability and Mechanistic Approach for Superior Adsorption of Arsenate from Water

Subbaiah Muthu Prabhu, Shunsuke Imamura, Keiko Sasaki

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In this study, we tried to synthesize lanthanum organic frameworks (MOFs) with the linkers of benzoic acid (BA), 1,4-benzene dicarboxylic acid, and 1,3,5-benzenetricarboxylic acid (BTC), abbreviated as La-BA, La-BDC, and La-BTC, respectively. Interestingly, the BA linker approached La metal to form lanthanum methanoate (La(HCOO) 3 ) instead of the La-BA MOF through an acid catalyst amide-hydrolysis mechanism, whereas La-BDC and La-BTC act as MOFs, confirmed by PXRD patterns. Various sophisticated instrumentation techniques such as FTIR, PXRD, XPS, BET, and TGA were utilized to understand the formation of MOF. This is the first report to investigate AsO 4 3- adsorption and the dissolution behavior of La-BA, La-BDC, and La-BTC in detail using different spectroscopic methods. The maximum AsO 4 3- adsorption densities obtained from the Langmuir isotherm model were found to be 2.623, 3.891, and 0.280 mmol/g for La-BA, La-BDC, and La-BTC, respectively, where the dose ratio was 1 g/L with the speed of 100 rpm at room temperature. The value for La-BDC was significantly superior to the previously reported adsorbents for AsO 4 3- to date. The presence of AsO 4 3- on both La-BA and La-BDC was confirmed by FTIR and XPS As 3d. After adsorption of 2.4 mM AsO 4 3- , the precipitation mechanism controls the adsorption capacities on La-BA and the ligand exchange mechanism on La-BDC confirmed by solution as well as solid analyses. Sorption kinetic data of AsO 4 3- followed a pseudo-second-order model, which is consistent with chemisorption involving the possible coordination of AsO 4 3- on La-BA and La-BDC. These results suggested that the MOF materials can be developed to immobilize arsenic-rich wastewater.

Original languageEnglish
Pages (from-to)6917-6928
Number of pages12
JournalACS Sustainable Chemistry and Engineering
Volume7
Issue number7
DOIs
Publication statusPublished - Apr 1 2019

Fingerprint

Tricarboxylic Acids
Lanthanum
Dicarboxylic Acids
Benzoic Acid
Benzoic acid
arsenate
adsorption
Adsorption
Acids
Water
acid
water
X ray photoelectron spectroscopy
arsenic acid
Arsenic
Chemisorption
X-ray spectroscopy
Benzene
Amides
Adsorbents

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Renewable Energy, Sustainability and the Environment

Cite this

@article{b9e07671c7a84310ab476d3a01ca3df8,
title = "Mono-, Di-, and Tricarboxylic Acid Facilitated Lanthanum-Based Organic Frameworks: Insights into the Structural Stability and Mechanistic Approach for Superior Adsorption of Arsenate from Water",
abstract = "In this study, we tried to synthesize lanthanum organic frameworks (MOFs) with the linkers of benzoic acid (BA), 1,4-benzene dicarboxylic acid, and 1,3,5-benzenetricarboxylic acid (BTC), abbreviated as La-BA, La-BDC, and La-BTC, respectively. Interestingly, the BA linker approached La metal to form lanthanum methanoate (La(HCOO) 3 ) instead of the La-BA MOF through an acid catalyst amide-hydrolysis mechanism, whereas La-BDC and La-BTC act as MOFs, confirmed by PXRD patterns. Various sophisticated instrumentation techniques such as FTIR, PXRD, XPS, BET, and TGA were utilized to understand the formation of MOF. This is the first report to investigate AsO 4 3- adsorption and the dissolution behavior of La-BA, La-BDC, and La-BTC in detail using different spectroscopic methods. The maximum AsO 4 3- adsorption densities obtained from the Langmuir isotherm model were found to be 2.623, 3.891, and 0.280 mmol/g for La-BA, La-BDC, and La-BTC, respectively, where the dose ratio was 1 g/L with the speed of 100 rpm at room temperature. The value for La-BDC was significantly superior to the previously reported adsorbents for AsO 4 3- to date. The presence of AsO 4 3- on both La-BA and La-BDC was confirmed by FTIR and XPS As 3d. After adsorption of 2.4 mM AsO 4 3- , the precipitation mechanism controls the adsorption capacities on La-BA and the ligand exchange mechanism on La-BDC confirmed by solution as well as solid analyses. Sorption kinetic data of AsO 4 3- followed a pseudo-second-order model, which is consistent with chemisorption involving the possible coordination of AsO 4 3- on La-BA and La-BDC. These results suggested that the MOF materials can be developed to immobilize arsenic-rich wastewater.",
author = "Prabhu, {Subbaiah Muthu} and Shunsuke Imamura and Keiko Sasaki",
year = "2019",
month = "4",
day = "1",
doi = "10.1021/acssuschemeng.8b06489",
language = "English",
volume = "7",
pages = "6917--6928",
journal = "ACS Sustainable Chemistry and Engineering",
issn = "2168-0485",
publisher = "American Chemical Society",
number = "7",

}

TY - JOUR

T1 - Mono-, Di-, and Tricarboxylic Acid Facilitated Lanthanum-Based Organic Frameworks

T2 - Insights into the Structural Stability and Mechanistic Approach for Superior Adsorption of Arsenate from Water

AU - Prabhu, Subbaiah Muthu

AU - Imamura, Shunsuke

AU - Sasaki, Keiko

PY - 2019/4/1

Y1 - 2019/4/1

N2 - In this study, we tried to synthesize lanthanum organic frameworks (MOFs) with the linkers of benzoic acid (BA), 1,4-benzene dicarboxylic acid, and 1,3,5-benzenetricarboxylic acid (BTC), abbreviated as La-BA, La-BDC, and La-BTC, respectively. Interestingly, the BA linker approached La metal to form lanthanum methanoate (La(HCOO) 3 ) instead of the La-BA MOF through an acid catalyst amide-hydrolysis mechanism, whereas La-BDC and La-BTC act as MOFs, confirmed by PXRD patterns. Various sophisticated instrumentation techniques such as FTIR, PXRD, XPS, BET, and TGA were utilized to understand the formation of MOF. This is the first report to investigate AsO 4 3- adsorption and the dissolution behavior of La-BA, La-BDC, and La-BTC in detail using different spectroscopic methods. The maximum AsO 4 3- adsorption densities obtained from the Langmuir isotherm model were found to be 2.623, 3.891, and 0.280 mmol/g for La-BA, La-BDC, and La-BTC, respectively, where the dose ratio was 1 g/L with the speed of 100 rpm at room temperature. The value for La-BDC was significantly superior to the previously reported adsorbents for AsO 4 3- to date. The presence of AsO 4 3- on both La-BA and La-BDC was confirmed by FTIR and XPS As 3d. After adsorption of 2.4 mM AsO 4 3- , the precipitation mechanism controls the adsorption capacities on La-BA and the ligand exchange mechanism on La-BDC confirmed by solution as well as solid analyses. Sorption kinetic data of AsO 4 3- followed a pseudo-second-order model, which is consistent with chemisorption involving the possible coordination of AsO 4 3- on La-BA and La-BDC. These results suggested that the MOF materials can be developed to immobilize arsenic-rich wastewater.

AB - In this study, we tried to synthesize lanthanum organic frameworks (MOFs) with the linkers of benzoic acid (BA), 1,4-benzene dicarboxylic acid, and 1,3,5-benzenetricarboxylic acid (BTC), abbreviated as La-BA, La-BDC, and La-BTC, respectively. Interestingly, the BA linker approached La metal to form lanthanum methanoate (La(HCOO) 3 ) instead of the La-BA MOF through an acid catalyst amide-hydrolysis mechanism, whereas La-BDC and La-BTC act as MOFs, confirmed by PXRD patterns. Various sophisticated instrumentation techniques such as FTIR, PXRD, XPS, BET, and TGA were utilized to understand the formation of MOF. This is the first report to investigate AsO 4 3- adsorption and the dissolution behavior of La-BA, La-BDC, and La-BTC in detail using different spectroscopic methods. The maximum AsO 4 3- adsorption densities obtained from the Langmuir isotherm model were found to be 2.623, 3.891, and 0.280 mmol/g for La-BA, La-BDC, and La-BTC, respectively, where the dose ratio was 1 g/L with the speed of 100 rpm at room temperature. The value for La-BDC was significantly superior to the previously reported adsorbents for AsO 4 3- to date. The presence of AsO 4 3- on both La-BA and La-BDC was confirmed by FTIR and XPS As 3d. After adsorption of 2.4 mM AsO 4 3- , the precipitation mechanism controls the adsorption capacities on La-BA and the ligand exchange mechanism on La-BDC confirmed by solution as well as solid analyses. Sorption kinetic data of AsO 4 3- followed a pseudo-second-order model, which is consistent with chemisorption involving the possible coordination of AsO 4 3- on La-BA and La-BDC. These results suggested that the MOF materials can be developed to immobilize arsenic-rich wastewater.

UR - http://www.scopus.com/inward/record.url?scp=85063165205&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063165205&partnerID=8YFLogxK

U2 - 10.1021/acssuschemeng.8b06489

DO - 10.1021/acssuschemeng.8b06489

M3 - Article

AN - SCOPUS:85063165205

VL - 7

SP - 6917

EP - 6928

JO - ACS Sustainable Chemistry and Engineering

JF - ACS Sustainable Chemistry and Engineering

SN - 2168-0485

IS - 7

ER -