Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents

Kazuki Fukushima, Yuto Inoue, Yuta Haga, Takayuki Ota, Kota Honda, Chikako Sato, Masaru Tanaka

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

We developed a biodegradable polycarbonate that demonstrates antithrombogenicity and vascular cell adhesion via organocatalytic ring-opening polymerization of a trimethylene carbonate (TMC) analogue bearing a methoxy group. The monoether-tagged polycarbonate demonstrates a platelet adhesion property that is 93 and 89% lower than those of poly(ethylene terephthalate) and polyTMC, respectively. In contrast, vascular cell adhesion properties of the polycarbonate are comparable to those controls, indicating a potential for selective cell adhesion properties. This difference in the cell adhesion property is well associated with surface hydration, which affects protein adsorption and denaturation. Fibrinogen is slightly denatured on the monoether-tagged polycarbonate, whereas fibronectin is highly activated to expose the RGD motif for favorable vascular cell adhesion. The surface hydration, mainly induced by the methoxy side chain, also contributes to slowing the enzymatic degradation. Consequently, the polycarbonate exhibits decent blood compatibility, vascular cell adhesion properties, and biodegradability, which is promising for applications in resorbable vascular grafts and stents.

Original languageEnglish
Pages (from-to)3834-3843
Number of pages10
JournalBiomacromolecules
Volume18
Issue number11
DOIs
Publication statusPublished - Nov 13 2017

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents'. Together they form a unique fingerprint.

  • Cite this