Monte Carlo simulation for solubility and spatial structure of fatty acid and higher alcohol in supercritical carbon dioxide with octane

Y. Koga, Y. Iwai, M. Yamamoto, Y. Arai

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Monte Carlo simulation has been applied to calculate the static properties such as solubilities and spatial structures of the fatty acids palmitic acid (C15H31COOH) and stearic acid (C17H35COOH), and of the higher alcohol stearyl alcohol (C18H37OH) in supercritical carbon dioxide with octane at 308.2 K. Carbon dioxide and octane were treated as single-site molecules for simplification, while the chain molecules (fatty acids and higher alcohol) were approximated as many-site molecules. The residual chemical potentials of the chain molecules in supercritical carbon dioxide with octane were calculated by the isothermal-isobaric Kirkwood method. It was shown that the solubilities (solid-gas equilibria) of fatty acids and higher alcohol in supercritical carbon dioxide with octane as a cosolvent can be calculated quantitatively by introducing an inter-site interaction parameter between unlike pair sites. Further, the mean-square end-to-end separations and the radial distribution functions of carbon dioxide and octane for chain molecules are reported as fundamental knowledge of the microstructure of chain molecules in the supercritical fluid phase.

Original languageEnglish
Pages (from-to)83-96
Number of pages14
JournalFluid Phase Equilibria
Volume131
Issue number1-2
DOIs
Publication statusPublished - May 15 1997

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Monte Carlo simulation for solubility and spatial structure of fatty acid and higher alcohol in supercritical carbon dioxide with octane'. Together they form a unique fingerprint.

  • Cite this