TY - JOUR
T1 - Multi-omics study for interpretation of genome-wide association study
AU - Akiyama, Masato
N1 - Publisher Copyright:
© 2020, The Author(s), under exclusive licence to The Japan Society of Human Genetics.
PY - 2021/1
Y1 - 2021/1
N2 - Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with complex traits, including a wide variety of diseases. Despite the successful identification of associated loci, interpreting GWAS findings remains challenging and requires other biological resources. Omics, including genomics, transcriptomics, proteomics, metabolomics, and epigenomics, are increasingly used in a broad range of research fields. Integrative analyses applying GWAS with these omics data are expected to expand our knowledge of complex traits and provide insight into the pathogenesis of complex diseases and their causative factors. Recently, associations between genetic variants and omics data have been comprehensively evaluated, providing new information on the influence of genetic variants on omics. Furthermore, recent advances in analytic methods, including single-cell technologies, have revealed previously unknown disease mechanisms. To advance our understanding of complex traits, integrative analysis using GWAS with multi-omics data is needed. In this review, I describe successful examples of integrative analyses based on omics and GWAS, discuss the limitations of current multi-omics analyses, and provide a perspective on future integrative studies.
AB - Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with complex traits, including a wide variety of diseases. Despite the successful identification of associated loci, interpreting GWAS findings remains challenging and requires other biological resources. Omics, including genomics, transcriptomics, proteomics, metabolomics, and epigenomics, are increasingly used in a broad range of research fields. Integrative analyses applying GWAS with these omics data are expected to expand our knowledge of complex traits and provide insight into the pathogenesis of complex diseases and their causative factors. Recently, associations between genetic variants and omics data have been comprehensively evaluated, providing new information on the influence of genetic variants on omics. Furthermore, recent advances in analytic methods, including single-cell technologies, have revealed previously unknown disease mechanisms. To advance our understanding of complex traits, integrative analysis using GWAS with multi-omics data is needed. In this review, I describe successful examples of integrative analyses based on omics and GWAS, discuss the limitations of current multi-omics analyses, and provide a perspective on future integrative studies.
UR - http://www.scopus.com/inward/record.url?scp=85091049583&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091049583&partnerID=8YFLogxK
U2 - 10.1038/s10038-020-00842-5
DO - 10.1038/s10038-020-00842-5
M3 - Review article
C2 - 32948838
AN - SCOPUS:85091049583
VL - 66
SP - 3
EP - 10
JO - Jinrui idengaku zasshi. The Japanese journal of human genetics
JF - Jinrui idengaku zasshi. The Japanese journal of human genetics
SN - 1434-5161
IS - 1
ER -