Multifunctional chimeric proteins for the sequential regulation of neural stem cell differentiation

Tadashi Nakaji-Hirabayashi, Koichi Kato, Yusuke Arima, Hiroo Iwata

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Controlling the dynamics of growth factor signaling is a challenge in regenerative medicine for various tissues including the central nervous system. Here, we report on the development of the biomolecular system that facilitates sequential regulation of growth factor signals acting on neural stem/progenitor cells. Recombinant technology was employed to synthesize the multifunctional chimeric protein that contained multiple domains, including epidermal growth factor (EGF), ciliary neurotrophic factor (CNTF), globular capping domain, thrombin-cleavable sequence, and substrate-binding domain with affinity for Ni(II) ions. The chimeric protein is expected to expose CNTF upon elimination of the capping domain by digestion with endogenous thrombin in vivo. When the multifunctional chimeric protein was immobilized onto a substrate through the coordination of the substrate-binding domain with surface-immobilized Ni(II) ions, the substrate served to proliferate neural stem cells, maintaining the population of undifferentiated cells at 85%. This effect is primarily due to the activity of EGF, while CNTF activity is temporally veiled with the capping domain. Upon digesting the thrombin-cleavable sequence to remove the capping domain, the activity of CNTF emerged to induce differentiation of astrocytes in situ from the proliferated neural stem cells. The fraction of differentiated astrocytes reached 68% of total cells. These results demonstrate the feasibility of the system for controlling the dynamics of growth factor signals.

Original languageEnglish
Pages (from-to)516-524
Number of pages9
JournalBioconjugate Chemistry
Volume19
Issue number2
DOIs
Publication statusPublished - Feb 1 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Multifunctional chimeric proteins for the sequential regulation of neural stem cell differentiation'. Together they form a unique fingerprint.

  • Cite this