TY - JOUR
T1 - Multiple zeta values, poly-Bernoulli numbers, and related zeta functions
AU - Arakawa, Tsuneo
AU - Kaneko, Masanobu
PY - 1999/3
Y1 - 1999/3
N2 - We study the function ζ(k1, . . . , kn - 1 ; s) = Σ0 1/mk11⋯mkn - 1 n - 1 msn and show that the poly-Bernoulli numbers introduced in our previous paper are expressed as special values at negative arguments of certain combinations of these functions. As a consequence of our study, we obtain a series of relations among multiple zeta values.
AB - We study the function ζ(k1, . . . , kn - 1 ; s) = Σ0 1/mk11⋯mkn - 1 n - 1 msn and show that the poly-Bernoulli numbers introduced in our previous paper are expressed as special values at negative arguments of certain combinations of these functions. As a consequence of our study, we obtain a series of relations among multiple zeta values.
UR - http://www.scopus.com/inward/record.url?scp=0001153313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001153313&partnerID=8YFLogxK
U2 - 10.1017/s0027763000006954
DO - 10.1017/s0027763000006954
M3 - Article
AN - SCOPUS:0001153313
SN - 0027-7630
VL - 153
SP - 189
EP - 209
JO - Nagoya Mathematical Journal
JF - Nagoya Mathematical Journal
ER -