Multiple zeta values, poly-Bernoulli numbers, and related zeta functions

Tsuneo Arakawa, Masanobu Kaneko

Research output: Contribution to journalArticle

89 Citations (Scopus)

Abstract

We study the function ζ(k1, . . . , kn - 1 ; s) = Σ0<m1<m2⋯<mn 1/mk11⋯mkn - 1 n - 1 msn and show that the poly-Bernoulli numbers introduced in our previous paper are expressed as special values at negative arguments of certain combinations of these functions. As a consequence of our study, we obtain a series of relations among multiple zeta values.

Original languageEnglish
Pages (from-to)189-209
Number of pages21
JournalNagoya Mathematical Journal
Volume153
Publication statusPublished - Mar 1 1999

Fingerprint

Multiple zeta Values
Bernoulli numbers
Riemann zeta function
Series

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. / Arakawa, Tsuneo; Kaneko, Masanobu.

In: Nagoya Mathematical Journal, Vol. 153, 01.03.1999, p. 189-209.

Research output: Contribution to journalArticle

@article{f4a88e21eee24d05b8200b3482f73b59,
title = "Multiple zeta values, poly-Bernoulli numbers, and related zeta functions",
abstract = "We study the function ζ(k1, . . . , kn - 1 ; s) = Σ0 1/mk11⋯mkn - 1 n - 1 msn and show that the poly-Bernoulli numbers introduced in our previous paper are expressed as special values at negative arguments of certain combinations of these functions. As a consequence of our study, we obtain a series of relations among multiple zeta values.",
author = "Tsuneo Arakawa and Masanobu Kaneko",
year = "1999",
month = "3",
day = "1",
language = "English",
volume = "153",
pages = "189--209",
journal = "Nagoya Mathematical Journal",
issn = "0027-7630",
publisher = "Nagoya University",

}

TY - JOUR

T1 - Multiple zeta values, poly-Bernoulli numbers, and related zeta functions

AU - Arakawa, Tsuneo

AU - Kaneko, Masanobu

PY - 1999/3/1

Y1 - 1999/3/1

N2 - We study the function ζ(k1, . . . , kn - 1 ; s) = Σ0 1/mk11⋯mkn - 1 n - 1 msn and show that the poly-Bernoulli numbers introduced in our previous paper are expressed as special values at negative arguments of certain combinations of these functions. As a consequence of our study, we obtain a series of relations among multiple zeta values.

AB - We study the function ζ(k1, . . . , kn - 1 ; s) = Σ0 1/mk11⋯mkn - 1 n - 1 msn and show that the poly-Bernoulli numbers introduced in our previous paper are expressed as special values at negative arguments of certain combinations of these functions. As a consequence of our study, we obtain a series of relations among multiple zeta values.

UR - http://www.scopus.com/inward/record.url?scp=0001153313&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001153313&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0001153313

VL - 153

SP - 189

EP - 209

JO - Nagoya Mathematical Journal

JF - Nagoya Mathematical Journal

SN - 0027-7630

ER -