Nanoscale Thermal Management of Single SnO2 Nanowire: Pico-Joule Energy Consumed Molecule Sensor

Gang Meng, Fuwei Zhuge, Kazuki Nagashima, Atsuo Nakao, Masaki Kanai, Yong He, Mickael Boudot, Tsunaki Takahashi, Ken Uchida, Takeshi Yanagida

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Here we report the thermal management of oxide nanowire sensor in both spatial and time domains by utilizing unique thermal properties of nanowires, which are (1) the reduced thermal conductivity and (2) the short thermal relaxation time down to several microseconds. Our method utilizes a pulsed self-Joule-heating of suspended SnO2 nanowire device, which enables not only the gigantic reduction of energy consumption down to ∼102 pJ/s, but also enhancement of the sensitivity for electrical sensing of NO2 (100 ppb). Furthermore, we demonstrate the applicability of the present method as sensors on flexible PEN substrate. Thus, this proposed thermal management concept of nanowires in both spatial and time domains offers a strategy for exploring novel functionalities of nanowire-based devices.

Original languageEnglish
Pages (from-to)997-1002
Number of pages6
JournalACS sensors
Volume1
Issue number8
DOIs
Publication statusPublished - Aug 26 2016

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Instrumentation
  • Process Chemistry and Technology
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Nanoscale Thermal Management of Single SnO<sub>2</sub> Nanowire: Pico-Joule Energy Consumed Molecule Sensor'. Together they form a unique fingerprint.

Cite this