Natural attenuation of Mn(II) in metal refinery wastewater: Microbial community structure analysis and isolation of a new Mn(II)-oxidizing bacterium Pseudomonas sp. SK3

Santisak Kitjanukit, Kyohei Takamatsu, Naoko Okibe

Research output: Contribution to journalArticle

Abstract

Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII 2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1%), Magnetospirillum sp. (3.2%), Geobacter sp. (0.3%), Bacillus sp. (0.18%), Pseudomonas sp. (0.03%), and non-metal-metabolizing bacteria (74.2%). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4% 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes.

Original languageEnglish
Article number507
JournalWater (Switzerland)
Volume11
Issue number3
DOIs
Publication statusPublished - Mar 1 2019

Fingerprint

Natural attenuation
Metal refineries
natural attenuation
Waste Water
Pseudomonas
microbial communities
wastewater
microbial community
social isolation
Bacteria
Wastewater
community structure
Metals
metals
oxidation
oxidants
Oxidation
bacterium
metal
Magnetospirillum

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Geography, Planning and Development
  • Aquatic Science
  • Water Science and Technology

Cite this

@article{d7201db3635b454298561ce1e316a004,
title = "Natural attenuation of Mn(II) in metal refinery wastewater: Microbial community structure analysis and isolation of a new Mn(II)-oxidizing bacterium Pseudomonas sp. SK3",
abstract = "Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII 2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1{\%}), Magnetospirillum sp. (3.2{\%}), Geobacter sp. (0.3{\%}), Bacillus sp. (0.18{\%}), Pseudomonas sp. (0.03{\%}), and non-metal-metabolizing bacteria (74.2{\%}). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4{\%} 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes.",
author = "Santisak Kitjanukit and Kyohei Takamatsu and Naoko Okibe",
year = "2019",
month = "3",
day = "1",
doi = "10.3390/w11030507",
language = "English",
volume = "11",
journal = "Water (Switzerland)",
issn = "2073-4441",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "3",

}

TY - JOUR

T1 - Natural attenuation of Mn(II) in metal refinery wastewater

T2 - Microbial community structure analysis and isolation of a new Mn(II)-oxidizing bacterium Pseudomonas sp. SK3

AU - Kitjanukit, Santisak

AU - Takamatsu, Kyohei

AU - Okibe, Naoko

PY - 2019/3/1

Y1 - 2019/3/1

N2 - Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII 2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1%), Magnetospirillum sp. (3.2%), Geobacter sp. (0.3%), Bacillus sp. (0.18%), Pseudomonas sp. (0.03%), and non-metal-metabolizing bacteria (74.2%). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4% 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes.

AB - Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII 2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1%), Magnetospirillum sp. (3.2%), Geobacter sp. (0.3%), Bacillus sp. (0.18%), Pseudomonas sp. (0.03%), and non-metal-metabolizing bacteria (74.2%). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4% 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes.

UR - http://www.scopus.com/inward/record.url?scp=85064911537&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064911537&partnerID=8YFLogxK

U2 - 10.3390/w11030507

DO - 10.3390/w11030507

M3 - Article

AN - SCOPUS:85064911537

VL - 11

JO - Water (Switzerland)

JF - Water (Switzerland)

SN - 2073-4441

IS - 3

M1 - 507

ER -