Navigation system with real-time finite element analysis for minimally invasive surgery

Ken'Ichi Morooka, Yousuke Nakasuka, Ryo Kurazume, Xian Chen, Tsutomu Hasegawa, Makoto Hashizume

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

This paper presents a navigation system for minimally invasive surgery, especially laparoscopic surgery in which operates in abdomen. Conventional navigation systems show virtual images by superimposing models of target tissues on real endoscopic images. Since soft tissues within the abdomen are deformed during the surgery, the navigation system needs to provide surgeons reliable information by deforming the models according to their biomechanical behavior. However, conventional navigation systems don't consider the tissue deformation during the surgery. We have been developing a new real-time FEM-based simulation for deforming a soft tissue model by using neural network[1]. The network is called the neuroFEM. The incorporation of the neuroFEM into the navigation leads to improve the accuracy of the navigation system. In this paper, we propose a new navigation system with a framework of the neuroFEM.

Original languageEnglish
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages2996-2999
Number of pages4
DOIs
Publication statusPublished - Oct 31 2013
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: Jul 3 2013Jul 7 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period7/3/137/7/13

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Navigation system with real-time finite element analysis for minimally invasive surgery'. Together they form a unique fingerprint.

Cite this