Neural network based a two phase interleaved boost converter for photovoltaic system

Donny Radianto, Masahito Shoyama

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

This paper presents Neural Network (NN) based A Two-Phase Interleaved Boost Converter (IBC) for Photovoltaic (PV) system. As known that this converter is the development of boost converter. In addition, it also functions to reduce output ripple current as well as to increase the output voltage of converter. This converter is driven by Pulse Width Modulation (PWM) which is governed by using controller based on NN. NN has two inputs including solar irradiance (G) and Temperature (T) and one output. The system is validated by a comparison between the proposed system with Fuzzy Logic Controller (FLC) in changing climate conditions. From the simulation results, the proposed system can provide higher voltage than FLC. In addition, the proposed system can shorten the steady state condition and can reduce voltage oscillations.

Original languageEnglish
Title of host publication3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages430-434
Number of pages5
ISBN (Electronic)9781479937950
DOIs
Publication statusPublished - Jan 20 2014
Event3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014 - Milwaukee, United States
Duration: Oct 19 2014Oct 22 2014

Other

Other3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014
CountryUnited States
CityMilwaukee
Period10/19/1410/22/14

Fingerprint

Neural networks
Controllers
Fuzzy logic
Electric potential
Pulse width modulation
Temperature

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment

Cite this

Radianto, D., & Shoyama, M. (2014). Neural network based a two phase interleaved boost converter for photovoltaic system. In 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014 (pp. 430-434). [7016422] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICRERA.2014.7016422

Neural network based a two phase interleaved boost converter for photovoltaic system. / Radianto, Donny; Shoyama, Masahito.

3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014. Institute of Electrical and Electronics Engineers Inc., 2014. p. 430-434 7016422.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Radianto, D & Shoyama, M 2014, Neural network based a two phase interleaved boost converter for photovoltaic system. in 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014., 7016422, Institute of Electrical and Electronics Engineers Inc., pp. 430-434, 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014, Milwaukee, United States, 10/19/14. https://doi.org/10.1109/ICRERA.2014.7016422
Radianto D, Shoyama M. Neural network based a two phase interleaved boost converter for photovoltaic system. In 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014. Institute of Electrical and Electronics Engineers Inc. 2014. p. 430-434. 7016422 https://doi.org/10.1109/ICRERA.2014.7016422
Radianto, Donny ; Shoyama, Masahito. / Neural network based a two phase interleaved boost converter for photovoltaic system. 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014. Institute of Electrical and Electronics Engineers Inc., 2014. pp. 430-434
@inproceedings{1dcffed5045c4c4d8256bf16129ca702,
title = "Neural network based a two phase interleaved boost converter for photovoltaic system",
abstract = "This paper presents Neural Network (NN) based A Two-Phase Interleaved Boost Converter (IBC) for Photovoltaic (PV) system. As known that this converter is the development of boost converter. In addition, it also functions to reduce output ripple current as well as to increase the output voltage of converter. This converter is driven by Pulse Width Modulation (PWM) which is governed by using controller based on NN. NN has two inputs including solar irradiance (G) and Temperature (T) and one output. The system is validated by a comparison between the proposed system with Fuzzy Logic Controller (FLC) in changing climate conditions. From the simulation results, the proposed system can provide higher voltage than FLC. In addition, the proposed system can shorten the steady state condition and can reduce voltage oscillations.",
author = "Donny Radianto and Masahito Shoyama",
year = "2014",
month = "1",
day = "20",
doi = "10.1109/ICRERA.2014.7016422",
language = "English",
pages = "430--434",
booktitle = "3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
address = "United States",

}

TY - GEN

T1 - Neural network based a two phase interleaved boost converter for photovoltaic system

AU - Radianto, Donny

AU - Shoyama, Masahito

PY - 2014/1/20

Y1 - 2014/1/20

N2 - This paper presents Neural Network (NN) based A Two-Phase Interleaved Boost Converter (IBC) for Photovoltaic (PV) system. As known that this converter is the development of boost converter. In addition, it also functions to reduce output ripple current as well as to increase the output voltage of converter. This converter is driven by Pulse Width Modulation (PWM) which is governed by using controller based on NN. NN has two inputs including solar irradiance (G) and Temperature (T) and one output. The system is validated by a comparison between the proposed system with Fuzzy Logic Controller (FLC) in changing climate conditions. From the simulation results, the proposed system can provide higher voltage than FLC. In addition, the proposed system can shorten the steady state condition and can reduce voltage oscillations.

AB - This paper presents Neural Network (NN) based A Two-Phase Interleaved Boost Converter (IBC) for Photovoltaic (PV) system. As known that this converter is the development of boost converter. In addition, it also functions to reduce output ripple current as well as to increase the output voltage of converter. This converter is driven by Pulse Width Modulation (PWM) which is governed by using controller based on NN. NN has two inputs including solar irradiance (G) and Temperature (T) and one output. The system is validated by a comparison between the proposed system with Fuzzy Logic Controller (FLC) in changing climate conditions. From the simulation results, the proposed system can provide higher voltage than FLC. In addition, the proposed system can shorten the steady state condition and can reduce voltage oscillations.

UR - http://www.scopus.com/inward/record.url?scp=84946691542&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84946691542&partnerID=8YFLogxK

U2 - 10.1109/ICRERA.2014.7016422

DO - 10.1109/ICRERA.2014.7016422

M3 - Conference contribution

AN - SCOPUS:84946691542

SP - 430

EP - 434

BT - 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014

PB - Institute of Electrical and Electronics Engineers Inc.

ER -