TY - JOUR
T1 - Neuropharmacological study of atp receptors, especially in the relationship between glia and pain
AU - Inoue, Kazuhide
PY - 2017/1/1
Y1 - 2017/1/1
N2 - A growing body of evidence indicates that extracellular ATP released or leaked from nonexcitable cells as well as neurons plays important roles in the regulation of neuronal and glial functions in the entire body through ATP receptors. ATP receptors (ionotropic P2X and metabotropic P2Y receptors) are the most abundant receptor families in living organisms. In the central nervous system, these receptors participate in the synaptic transmission and intercellular communications between neurons and glia. The glia cells are classified into three types: astrocytes; oligodendrocytes; and microglia. There are many reports that spinal microglia express ATP receptors (P2X4, P2X7, P2Y6, and P2Y12 receptors) that have very important roles. We reported that several molecules of microglia are activated after peripheral nerve injury in a neuropathic pain model. In particular, P2X4 receptors (P2X4Rs) expressed in microglia play a critical role in evoking neuropathic pain. P2X4Rs are upregulated in spinal microglia after nerve injury by several factors such as the CC chemokine receptor CCR2, fibronectin in the spinal cord, interferon regulatory factor (IRF) 8, and IRF5 expressed in microglia. The inhibition of P2X4R action suppresses the functions of microglia and neuropathic pain. These results indicate that overexpressing P2X4Rs on microglia are a central player in evoking neuropathic pain.
AB - A growing body of evidence indicates that extracellular ATP released or leaked from nonexcitable cells as well as neurons plays important roles in the regulation of neuronal and glial functions in the entire body through ATP receptors. ATP receptors (ionotropic P2X and metabotropic P2Y receptors) are the most abundant receptor families in living organisms. In the central nervous system, these receptors participate in the synaptic transmission and intercellular communications between neurons and glia. The glia cells are classified into three types: astrocytes; oligodendrocytes; and microglia. There are many reports that spinal microglia express ATP receptors (P2X4, P2X7, P2Y6, and P2Y12 receptors) that have very important roles. We reported that several molecules of microglia are activated after peripheral nerve injury in a neuropathic pain model. In particular, P2X4 receptors (P2X4Rs) expressed in microglia play a critical role in evoking neuropathic pain. P2X4Rs are upregulated in spinal microglia after nerve injury by several factors such as the CC chemokine receptor CCR2, fibronectin in the spinal cord, interferon regulatory factor (IRF) 8, and IRF5 expressed in microglia. The inhibition of P2X4R action suppresses the functions of microglia and neuropathic pain. These results indicate that overexpressing P2X4Rs on microglia are a central player in evoking neuropathic pain.
UR - http://www.scopus.com/inward/record.url?scp=85018434740&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018434740&partnerID=8YFLogxK
U2 - 10.1248/yakushi.16-00262
DO - 10.1248/yakushi.16-00262
M3 - Review article
C2 - 28458288
AN - SCOPUS:85018434740
SN - 0031-6903
VL - 137
SP - 563
EP - 569
JO - Yakugaku Zasshi
JF - Yakugaku Zasshi
IS - 5
ER -