New High-Throughput Screening Identifies Compounds That Reduce Viability Specifically in Liver Cancer Cells That Express High Levels of SALL4 by Inhibiting Oxidative Phosphorylation

Justin L. Tan, Feng Li, Joanna Z. Yeo, Kol Jia Yong, Mahmoud A. Bassal, Guo Hao Ng, May Yin Lee, Chung Yan Leong, Hong Kee Tan, Chan shuo Wu, Bee Hui Liu, Tim H. Chan, Zi Hui Tan, Yun Shen Chan, Siyu Wang, Zhi Han Lim, Tan Boon Toh, Lissa Hooi, Kia Ngee Low, Siming MaNikki R. Kong, Alicia J. Stein, Yue Wu, Matan T. Thangavelu, Atsushi Suzuki, Giridharan Periyasamy, John M. Asara, Yock Young Dan, Glenn K. Bonney, Edward K. Chow, Guo Dong Lu, Huck Hui Ng, Yoganathan Kanagasundaram, Siew Bee Ng, Wai Leong Tam, Daniel G. Tenen, Li Chai

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Background & Aims: Some oncogenes encode transcription factors, but few drugs have been successfully developed to block their activity specifically in cancer cells. The transcription factor SALL4 is aberrantly expressed in solid tumor and leukemia cells. We developed a screen to identify compounds that reduce the viability of liver cancer cells that express high levels of SALL4, and we investigated their mechanisms. Methods: We developed a stringent high-throughput screening platform comprising unmodified SNU-387 and SNU-398 liver cancer cell lines and SNU-387 cell lines engineered to express low and high levels of SALL4. We screened 1597 pharmacologically active small molecules and 21,575 natural product extracts from plant, bacteria, and fungal sources for those that selectively reduce the viability of cells with high levels of SALL4 (SALL4hi cells). We compared gene expression patterns of SALL4hi cells vs SALL4-knockdown cells using RNA sequencing and real-time polymerase chain reaction analyses. Xenograft tumors were grown in NOD/SCID gamma mice from SALL4hi SNU-398 or HCC26.1 cells or from SALL4lo patient-derived xenograft (PDX) cells; mice were given injections of identified compounds or sorafenib, and the effects on tumor growth were measured. Results: Our screening identified 1 small molecule (PI-103) and 4 natural compound analogues (oligomycin, efrapeptin, antimycin, and leucinostatin) that selectively reduced viability of SALL4hi cells. We performed validation studies, and 4 of these compounds were found to inhibit oxidative phosphorylation. The adenosine triphosphate (ATP) synthase inhibitor oligomycin reduced the viability of SALL4hi hepatocellular carcinoma and non–small-cell lung cancer cell lines with minimal effects on SALL4lo cells. Oligomycin also reduced the growth of xenograft tumors grown from SALL4hi SNU-398 or HCC26.1 cells to a greater extent than sorafenib, but oligomycin had little effect on tumors grown from SALL4lo PDX cells. Oligomycin was not toxic to mice. Analyses of chromatin immunoprecipitation sequencing data showed that SALL4 binds approximately 50% of mitochondrial genes, including many oxidative phosphorylation genes, to activate their transcription. In comparing SALL4hi and SALL4-knockdown cells, we found SALL4 to increase oxidative phosphorylation, oxygen consumption rate, mitochondrial membrane potential, and use of oxidative phosphorylation–related metabolites to generate ATP. Conclusions: In a screening for compounds that reduce the viability of cells that express high levels of the transcription factor SALL4, we identified inhibitors of oxidative phosphorylation, which slowed the growth of xenograft tumors from SALL4hi cells in mice. SALL4 activates the transcription of genes that regulate oxidative phosphorylation to increase oxygen consumption, mitochondrial membrane potential, and ATP generation in cancer cells. Inhibitors of oxidative phosphorylation might be used for the treatment of liver tumors with high levels of SALL4.

Original languageEnglish
Pages (from-to)1615-1629.e17
JournalGastroenterology
Volume157
Issue number6
DOIs
Publication statusPublished - Dec 2019

All Science Journal Classification (ASJC) codes

  • Hepatology
  • Gastroenterology

Fingerprint Dive into the research topics of 'New High-Throughput Screening Identifies Compounds That Reduce Viability Specifically in Liver Cancer Cells That Express High Levels of SALL4 by Inhibiting Oxidative Phosphorylation'. Together they form a unique fingerprint.

Cite this