New method to obtain (001) surface-oriented polycrystalline silicon films by intensity-modulated excimer laser annealing: Molecular dynamics study

Norie Matsubara, Tomohiko Ogata, Takanori Mitani, Shinji Munetoh, Teruaki Motooka

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

We have investigated the dependence of the melting and crystal growth rates on the crystal orientation at solid/liquid (s/l) silicon (Si) interfaces by molecular dynamics (MD) simulations. It was found that there was no appreciable difference in the melting rates, but that the growth rates substantially depend on the crystal orientation at the s/l interface. The growth rate at the (001) interface was found to be more than twice that at the (111) interface. We have also performed MD simulations of an intensity-modulated excimer laser annealing (IMELA) of Si thin films, and these results suggest that (001) surface-oriented Si without {111} stacking faults can be obtained by repetitions of melting and crystallization of amorphous Si on glass by IMELA owing to the preferential growth in the h100i direction.

Original languageEnglish
Article number03B006
JournalJapanese journal of applied physics
Volume48
Issue number3 PART 3
DOIs
Publication statusPublished - Mar 1 2009

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'New method to obtain (001) surface-oriented polycrystalline silicon films by intensity-modulated excimer laser annealing: Molecular dynamics study'. Together they form a unique fingerprint.

Cite this