Nickel, palladium, and platinum complexes of η 5- cyclopentadienide C 60R 5 ligands. Kinetic and thermodynamic stabilization effects of the C 60Ph 5 ligand

Yoichiro Kuninobu, Yutaka Matsuo, Motoki Toganoh, Masaya Sawamura, Eiichi Nakamura

    Research output: Contribution to journalArticlepeer-review

    59 Citations (Scopus)


    The nickel-, palladium-, and platinum-RFC p complexes η 5-RFC p)(η 3-allylic) (3b, RFC p = C 60R 5, R = Me, allylic = methallyl; 4a, R = Ph, allylic = allyl; 4b, R = Ph, allylic = methallyl), Pd(η 5- RFC p)(η 3-allylic) (7a, R = Me, allylic = allyl; 7b, R = Me, allylic = methallyl; 7c, R = Me, allylic = crotyl; 8a, R = Ph, allylic = allyl; 8b, R = Ph, allylic = methallyl; 8c, R = Ph, allylic = crotyl), and Pt(η 5-RFC p)(η 3-methallyl) (9, R = Me; 10, R = Ph), were synthesized by transmetalation between K(RFC p) (R = Me, Ph) and [Ni(allylic)Br] 2, [Pd(allylic)Cl] 2, or [Pt(methallyl)Cl] 2 in THF at 25 °C for 10 min. The nickel-PhFC p complexes 4a,b are unusually more stable toward molecular oxygen than the corresponding simple nickel cyclopentadienides and survive in air for many hours at elevated temperature. The crystal structures and the electrochemical properties of the palladium complexes suggest that the unusual stability of the PhFC p complexes is due to the kinetic stabilization effect of the five Ph groups surrounding the metal atom and the thermodynamic stabilization effect of the electron-withdrawing fullerene moiety, hence suggesting new opportunities for the synthesis of otherwise unstable organometallic compounds.

    Original languageEnglish
    Pages (from-to)3259-3266
    Number of pages8
    Issue number13
    Publication statusPublished - Jun 21 2004

    All Science Journal Classification (ASJC) codes

    • Physical and Theoretical Chemistry
    • Organic Chemistry
    • Inorganic Chemistry


    Dive into the research topics of 'Nickel, palladium, and platinum complexes of η <sup>5</sup>- cyclopentadienide C <sub>60</sub>R <sub>5</sub> ligands. Kinetic and thermodynamic stabilization effects of the C <sub>60</sub>Ph <sub>5</sub> ligand'. Together they form a unique fingerprint.

    Cite this