TY - JOUR
T1 - Non-abelian zeta functions for function fields
AU - Weng, Lin
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2005/10
Y1 - 2005/10
N2 - In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, We first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a "weighted count" on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these points. Then we define non-abelian L-functions for curves over finite fields using integrations of Eisenstein series associated to L2-automorphic forms over certain generalized moduli spaces.
AB - In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, We first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a "weighted count" on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these points. Then we define non-abelian L-functions for curves over finite fields using integrations of Eisenstein series associated to L2-automorphic forms over certain generalized moduli spaces.
UR - http://www.scopus.com/inward/record.url?scp=27544464337&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27544464337&partnerID=8YFLogxK
U2 - 10.1353/ajm.2005.0035
DO - 10.1353/ajm.2005.0035
M3 - Article
AN - SCOPUS:27544464337
SN - 0002-9327
VL - 127
SP - 973
EP - 1017
JO - American Journal of Mathematics
JF - American Journal of Mathematics
IS - 5
ER -