Non-carbon loss long-term continuous lactic acid production from mixed sugars using thermophilic Enterococcus faecium QU 50

Mohamed Ali Abdel-Rahman, Jiaming Tan, Yukihiro Tashiro, Takeshi Zendo, Kenji Sakai, Kenji Sonomoto

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In this study, a non-sterile (open) continuous fermentation (OCF) process with no-carbon loss was developed to improve lactic acid (LA) productivity and operational stability from the co-utilization of lignocellulose-derived sugars by thermophilic Enterococcus faecium QU 50. The effects of different sugar mixtures on LA production were firstly investigated in conventional OCF at 50°C, pH 6.5 and a dilution rate of 0.20 hr−1. The xylose consumption ratio was greatly lower than that of glucose in fermentations with glucose/xylose mixtures, indicating apparent carbon catabolite repression (CCR). However, CCR could be efficiently eliminated by feeding solutions containing the cellobiose/xylose mixture. In OCF at a dilution rate ca. 0.10 hr−1, strain QU 50 produced 42.6 g L−1 of l-LA with a yield of 0.912 g g−1-consumed sugars, LA yield of 0.655 g g−1 based on mixed sugar-loaded, and a productivity of 4.31 g L−1 hr−1 from simulated energy cane hydrolyzate. In OCF with high cell density by cell recycling, simultaneous and complete co-utilization of sugars was achieved with stable LA production at 60.1 ± 3.25 g L−1 with LA yield of 0.944 g g−1-consumed sugar and LA productivity of 6.49 ± 0.357 g L−1 hr−1. Besides this, a dramatic increase in LA yield of 0.927 g g−1 based on mixed sugar-loaded with prolonged operational stability for at least 500 hr (>20 days) was established. This robust system demonstrates an initial green step with a no-carbon loss under energy-saving toward the feasibility of sustainable LA production from lignocellulosic sugars.

Original languageEnglish
Pages (from-to)1673-1683
Number of pages11
JournalBiotechnology and Bioengineering
Volume117
Issue number6
DOIs
Publication statusPublished - Jun 1 2020

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Fingerprint Dive into the research topics of 'Non-carbon loss long-term continuous lactic acid production from mixed sugars using thermophilic Enterococcus faecium QU 50'. Together they form a unique fingerprint.

  • Cite this