Non-Markovian dynamics of reaction coordinate in polymer folding

T. Sakaue, J. C. Walter, E. Carlon, C. Vanderzande

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

We develop a theoretical description of the critical zipping dynamics of a self-folding polymer. We use tension propagation theory and the formalism of the generalized Langevin equation applied to a polymer that contains two complementary parts which can bind to each other. At the critical temperature, the (un)zipping is unbiased and the two strands open and close as a zipper. The number of broken base pairs n(t) displays a subdiffusive motion characterized by a variance growing as 〈Δn2(t)〉 ∼ tα with α < 1 at long times. Our theory provides an estimate of both the asymptotic anomalous exponent α and of the subleading correction term, which are both in excellent agreement with numerical simulations. The results indicate that the tension propagation theory captures the relevant features of the dynamics and shed some new insights on related polymer problems characterized by anomalous dynamical behavior.

Original languageEnglish
Pages (from-to)3174-3181
Number of pages8
JournalSoft Matter
Volume13
Issue number17
DOIs
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Non-Markovian dynamics of reaction coordinate in polymer folding'. Together they form a unique fingerprint.

Cite this