Novel aspects of the [1,3] sigmatropic silyl shift in allylsilane

Tokio Yamabe, Koichi Nakamura, Yoshihito Shiota, Kazunari Yoshizawa, Susumu Kawauchi, Mitsuo Ishikawa

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Ab initio molecular orbital calculations of the C = CCSi torsion and the [1,3] sigmatropic silyl shift in allylsilane (SiC3H8, 1) have been carried out. It is clarified that the skew conformer of 1 is more stable than other conformers. Its torsional energy depends on the σ-π hyperconjugation as compared with that of 1-butene (2). In the [1,3] silyl shift, the reaction coordinate of the silyl-group migration in the early and final stages is congruent with that of the C = CCSi torsion near the skew conformer. Divergence points on the inversion and retention paths are discussed from the viewpoint of the degree of nonplanarity of the migrating silyl group. The activation energy along the retention path is calculated to be lower than that along the inversion path at various levels of theory, which is in remarkable contrast to 2, in which the inversion path is more favorable. From the energetical viewpoint, the [1,3] shift of the silyl group is expected to proceed with retention of the silicon configuration at the migrating center. Although this looks like an exception to the Woodward-Hoffmann rules, this may be caused by the nearly degenerate HOMO and (HOMO-1) in the transition state on the inversion path in 1.

Original languageEnglish
Pages (from-to)807-815
Number of pages9
JournalJournal of the American Chemical Society
Volume119
Issue number4
DOIs
Publication statusPublished - Jan 29 1997
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Novel aspects of the [1,3] sigmatropic silyl shift in allylsilane'. Together they form a unique fingerprint.

Cite this