Novel mechanistic insights into methane activation over Fe and Cu active sites in zeolites: A comparative DFT study using meta-GGA functionals

Muhammad Haris Mahyuddin, Aleksandar Tsekov Staykov, Adhitya Gandaryus Saputro, Mohammad Kemal Agusta, Hermawan Kresno Dipojono, Kazunari Yoshizawa

Research output: Contribution to journalArticle

Abstract

Fe- and Cu-exchanged zeolites are known to oxidize methane directly to methanol at low temperature and have been intensively discussed in recent literature studies including theoretical works based on the density functional theory (DFT). However, there are a number of computational results that are contradictive to each other due to a limitation in accessing accurate methods for realistic models. To address this issue, in this study, we utilize a relatively accurate yet computationally efficient meta-GGA method, including the TPSS, RTPSS, MS0, MS1, MS2, and SCAN functionals, combined with the D2 method of dispersion correction to calculate the homolytic C-H bond cleavage of methane on the periodic structures of [FeO]2+-ZSM-5, [Cu2(μ-O)]2+-ZSM-5, and [Cu3(μ-O)3]2+-MOR zeolites. Besides showing energetics and geometrical comparisons, herein through analysis of projected density of states, we identify [FeIV= O]2+, [CuII2(μ-O)]2+, and [CuII2CuIII(μ-O)2(μ-O·)]2+ as the preferred electronic structures for the corresponding active species. In addition, we discuss in great detail the fundamental difference in the C-H bond cleavage mechanism for each active species to show the high importance of accurately treating the formed Fe-OH bond on the stability of transition (TS) and radical intermediate (RI) states and to clarify the role of the O atom radical character in preserving the stability of the [Cu3(μ-O)3]2+ active species when the TS and RI states are formed. We also show the importance of correctly describing (i) weak interactions involved in the methane adsorption state and (ii) Cu-O-Cu bond strengths involved in the TS and RI states for predicting a reasonable reaction energy trend.

Original languageEnglish
Pages (from-to)18112-18125
Number of pages14
JournalJournal of Physical Chemistry C
Volume124
Issue number33
DOIs
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Novel mechanistic insights into methane activation over Fe and Cu active sites in zeolites: A comparative DFT study using meta-GGA functionals'. Together they form a unique fingerprint.

  • Cite this