Numerical investigation of transient harbor oscillations induced by N-waves

Junliang Gao, Chunyan Ji, Oleg Gaidai, Yingyi Liu, Xiaojian Ma

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Tsunamis are traveling waves characterized by large amplitudes and long wavelengths close to the coastline. Often, the first couple of leading waves are either leading-elevation N-waves (LEN waves) or leading-depression N-waves (LDN waves). These waves are usually devastating, causing serious damage to coastal infrastructures or even human casualties. Among various natural disasters related to tsunamis, harbor oscillations are one of the most frequent disasters around the world, which can cause excessive movements of moored ships and rupture mooring lines inside the harbor. In this article, transient harbor oscillations induced by various incident N-waves are first investigated. The transient oscillations are simulated by a fully nonlinear Boussinesq model, FUNWAVE-TVD. The incident N-waves include the TS-type and MS-type isosceles LEN and LDN waves. The TS- and MS-type N-waves correspond to the waveform expressions proposed by Tadepalli and Synolakis [1] and Madsen and Schäffer [2], respectively. This paper focuses on the effects of the incident wave amplitude and its type on the relative wave energy distribution inside the harbor. The maximum runup and rundown of various incident waves are also discussed. For comparison, the transient oscillations excited by solitary waves are also considered. The harbor used in this paper is assumed to be long and narrow and has constant depth; the free surface movement inside the harbor is essentially one-dimensional. This study reveals that, for the given harbor, for the range of the incident wave amplitude and the incident wave types studied in this paper, the larger tsunamis lead to a more uniform relative wave energy distribution inside the harbor. The relative wave energy distributions induced by the LDN waves are always more uniform than those induced by the LEN waves, while the relative wave energy distributions induced by the solitary waves are more concentrated than those induced by the various N-waves. When the incident wave amplitude is relatively large, the maximum runups of the LDN waves are considerably larger than those of the solitary waves, while those of the LEN waves are much less than those of the solitary waves.

Original languageEnglish
Pages (from-to)119-131
Number of pages13
JournalCoastal Engineering
Volume125
DOIs
Publication statusPublished - Jul 1 2017

Fingerprint

Ports and harbors
Solitons
Tsunamis
Disasters

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Ocean Engineering

Cite this

Numerical investigation of transient harbor oscillations induced by N-waves. / Gao, Junliang; Ji, Chunyan; Gaidai, Oleg; Liu, Yingyi; Ma, Xiaojian.

In: Coastal Engineering, Vol. 125, 01.07.2017, p. 119-131.

Research output: Contribution to journalArticle

Gao, Junliang ; Ji, Chunyan ; Gaidai, Oleg ; Liu, Yingyi ; Ma, Xiaojian. / Numerical investigation of transient harbor oscillations induced by N-waves. In: Coastal Engineering. 2017 ; Vol. 125. pp. 119-131.
@article{6389859be2b14616a238f145b2b97639,
title = "Numerical investigation of transient harbor oscillations induced by N-waves",
abstract = "Tsunamis are traveling waves characterized by large amplitudes and long wavelengths close to the coastline. Often, the first couple of leading waves are either leading-elevation N-waves (LEN waves) or leading-depression N-waves (LDN waves). These waves are usually devastating, causing serious damage to coastal infrastructures or even human casualties. Among various natural disasters related to tsunamis, harbor oscillations are one of the most frequent disasters around the world, which can cause excessive movements of moored ships and rupture mooring lines inside the harbor. In this article, transient harbor oscillations induced by various incident N-waves are first investigated. The transient oscillations are simulated by a fully nonlinear Boussinesq model, FUNWAVE-TVD. The incident N-waves include the TS-type and MS-type isosceles LEN and LDN waves. The TS- and MS-type N-waves correspond to the waveform expressions proposed by Tadepalli and Synolakis [1] and Madsen and Sch{\"a}ffer [2], respectively. This paper focuses on the effects of the incident wave amplitude and its type on the relative wave energy distribution inside the harbor. The maximum runup and rundown of various incident waves are also discussed. For comparison, the transient oscillations excited by solitary waves are also considered. The harbor used in this paper is assumed to be long and narrow and has constant depth; the free surface movement inside the harbor is essentially one-dimensional. This study reveals that, for the given harbor, for the range of the incident wave amplitude and the incident wave types studied in this paper, the larger tsunamis lead to a more uniform relative wave energy distribution inside the harbor. The relative wave energy distributions induced by the LDN waves are always more uniform than those induced by the LEN waves, while the relative wave energy distributions induced by the solitary waves are more concentrated than those induced by the various N-waves. When the incident wave amplitude is relatively large, the maximum runups of the LDN waves are considerably larger than those of the solitary waves, while those of the LEN waves are much less than those of the solitary waves.",
author = "Junliang Gao and Chunyan Ji and Oleg Gaidai and Yingyi Liu and Xiaojian Ma",
year = "2017",
month = "7",
day = "1",
doi = "10.1016/j.coastaleng.2017.03.004",
language = "English",
volume = "125",
pages = "119--131",
journal = "Coastal Engineering",
issn = "0378-3839",
publisher = "Elsevier",

}

TY - JOUR

T1 - Numerical investigation of transient harbor oscillations induced by N-waves

AU - Gao, Junliang

AU - Ji, Chunyan

AU - Gaidai, Oleg

AU - Liu, Yingyi

AU - Ma, Xiaojian

PY - 2017/7/1

Y1 - 2017/7/1

N2 - Tsunamis are traveling waves characterized by large amplitudes and long wavelengths close to the coastline. Often, the first couple of leading waves are either leading-elevation N-waves (LEN waves) or leading-depression N-waves (LDN waves). These waves are usually devastating, causing serious damage to coastal infrastructures or even human casualties. Among various natural disasters related to tsunamis, harbor oscillations are one of the most frequent disasters around the world, which can cause excessive movements of moored ships and rupture mooring lines inside the harbor. In this article, transient harbor oscillations induced by various incident N-waves are first investigated. The transient oscillations are simulated by a fully nonlinear Boussinesq model, FUNWAVE-TVD. The incident N-waves include the TS-type and MS-type isosceles LEN and LDN waves. The TS- and MS-type N-waves correspond to the waveform expressions proposed by Tadepalli and Synolakis [1] and Madsen and Schäffer [2], respectively. This paper focuses on the effects of the incident wave amplitude and its type on the relative wave energy distribution inside the harbor. The maximum runup and rundown of various incident waves are also discussed. For comparison, the transient oscillations excited by solitary waves are also considered. The harbor used in this paper is assumed to be long and narrow and has constant depth; the free surface movement inside the harbor is essentially one-dimensional. This study reveals that, for the given harbor, for the range of the incident wave amplitude and the incident wave types studied in this paper, the larger tsunamis lead to a more uniform relative wave energy distribution inside the harbor. The relative wave energy distributions induced by the LDN waves are always more uniform than those induced by the LEN waves, while the relative wave energy distributions induced by the solitary waves are more concentrated than those induced by the various N-waves. When the incident wave amplitude is relatively large, the maximum runups of the LDN waves are considerably larger than those of the solitary waves, while those of the LEN waves are much less than those of the solitary waves.

AB - Tsunamis are traveling waves characterized by large amplitudes and long wavelengths close to the coastline. Often, the first couple of leading waves are either leading-elevation N-waves (LEN waves) or leading-depression N-waves (LDN waves). These waves are usually devastating, causing serious damage to coastal infrastructures or even human casualties. Among various natural disasters related to tsunamis, harbor oscillations are one of the most frequent disasters around the world, which can cause excessive movements of moored ships and rupture mooring lines inside the harbor. In this article, transient harbor oscillations induced by various incident N-waves are first investigated. The transient oscillations are simulated by a fully nonlinear Boussinesq model, FUNWAVE-TVD. The incident N-waves include the TS-type and MS-type isosceles LEN and LDN waves. The TS- and MS-type N-waves correspond to the waveform expressions proposed by Tadepalli and Synolakis [1] and Madsen and Schäffer [2], respectively. This paper focuses on the effects of the incident wave amplitude and its type on the relative wave energy distribution inside the harbor. The maximum runup and rundown of various incident waves are also discussed. For comparison, the transient oscillations excited by solitary waves are also considered. The harbor used in this paper is assumed to be long and narrow and has constant depth; the free surface movement inside the harbor is essentially one-dimensional. This study reveals that, for the given harbor, for the range of the incident wave amplitude and the incident wave types studied in this paper, the larger tsunamis lead to a more uniform relative wave energy distribution inside the harbor. The relative wave energy distributions induced by the LDN waves are always more uniform than those induced by the LEN waves, while the relative wave energy distributions induced by the solitary waves are more concentrated than those induced by the various N-waves. When the incident wave amplitude is relatively large, the maximum runups of the LDN waves are considerably larger than those of the solitary waves, while those of the LEN waves are much less than those of the solitary waves.

UR - http://www.scopus.com/inward/record.url?scp=85018674435&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85018674435&partnerID=8YFLogxK

U2 - 10.1016/j.coastaleng.2017.03.004

DO - 10.1016/j.coastaleng.2017.03.004

M3 - Article

AN - SCOPUS:85018674435

VL - 125

SP - 119

EP - 131

JO - Coastal Engineering

JF - Coastal Engineering

SN - 0378-3839

ER -