Abstract
The technology of large scale hydrogen transmission from central production facilities to refueling stations and stationary power sites is at present undeveloped. Among the problems which confront the implementation of this technology is the deleterious effect of hydrogen on structural material properties, in particular at gas pressure of 1000 psi which is the desirable transmission pressure suggested by economic studies for efficient transport, In this paper, a hydrogen transport methodology for the calculation of hydrogen accumulation ahead of a crack tip in a pipeline steel is outlined. The approach accounts for stress-driven transient diffusion of hydrogen and trapping at microstructural defects whose density may evolve dynamically with deformation. The results are used to discuss a lifetime prediction methodology for failure of materials used for pipelines and welds exposed to high-pressure hydrogen. Development of such predictive capability and strategies is of paramount importance to the rapid, assessment of using the natural-gas pipeline distribution system for hydrogen transport and of the susceptibility of new alloys tailored for use in the new hydrogen economy.
Original language | English |
---|---|
Pages | 193-199 |
Number of pages | 7 |
DOIs | |
Publication status | Published - Aug 6 2007 |
Externally published | Yes |
Event | 2006 6th International Pipeline Conference, IPC 2006 - Calgary, AB, Canada Duration: Sept 25 2006 → Sept 29 2006 |
Other
Other | 2006 6th International Pipeline Conference, IPC 2006 |
---|---|
Country/Territory | Canada |
City | Calgary, AB |
Period | 9/25/06 → 9/29/06 |
All Science Journal Classification (ASJC) codes
- Engineering(all)