Numerical simulation of microwave neutralizer including ion’ s kinetic effects

K. Kubota, H. Watanabe, N. Yamamoto, H. Nakashima, T. Miyasaka, I. Funaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

In order to analyze a microwave neutralizer in ion’s time/space scales, a three-dimensional Hybrid-PIC (Particle-In-Cell) solver which treats ions and electrons as particles and fluid was developed. In this analysis, microwave power absorption distribution was estimated by means of another electromagnetic PIC solver. The results show that qualitative agreement on voltage-current characteristics was achieved, whereas a discontinuous current jump between a low current mode and a high current mode was still diffused. It is found that, in the high current mode, the electric potential is gradually increased toward the plume region inside the orifice, which promotes high ion production rate there. It is also shown that the sputtering rate of an antenna is comparable with the measured data, where doubly-ionized ions mainly produced inside the orifice considerably aggravate the sputtering rate.

Original languageEnglish
Title of host publication50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Electronic)9781624103032
DOIs
Publication statusPublished - 2014
Event50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and exhibit 2014 - Cleveland, United States
Duration: Jul 28 2014Jul 30 2014

Publication series

Name50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014

Other

Other50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and exhibit 2014
Country/TerritoryUnited States
CityCleveland
Period7/28/147/30/14

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Aerospace Engineering
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Numerical simulation of microwave neutralizer including ion’ s kinetic effects'. Together they form a unique fingerprint.

Cite this