Numerical simulation of plasma flows and radio-frequency blackout in atmospheric reentry demonstrator mission

Minseok Jung, Hisashi Kihara, Ken Ichi Abe, Yusuke Takahashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Numerical simulations of plasma flows and electromagnetic waves around a reentry vehicle were performed to estimate the radio-frequency blackout. The plasma flows in the shock layer and wake region were calculated using computational fluid dynamics technique. The simulation of electromagnetic waves around a reentry vehicle was conducted using a frequency-dependent finite-difference time-domain method with the plasma properties obtained by computational fluid dynamics. The numerical simulations were performed for the atmospheric reentry demonstrator at various altitudes based on the reentry orbit data. Three cases of the numerical simulations, i.e., an axisymmetric model, a three-dimensional model with non-catalytic wall and finite-catalytic wall, were performed for evaluating the effects of angle of attack and catalytic wall on the radio-frequency blackout. The formations for the number density of electrons that is an important parameter in evaluating the radio-frequency blackout were greatly changed by these three cases. The simulation model was validated based on the signal loss history of the experimental flight data. The simulation results using a three-dimensional model with finite-catalytic wall showed better agreement with the measured results compared to other two cases.

Original languageEnglish
Title of host publication47th AIAA Fluid Dynamics Conference, 2017
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105005
Publication statusPublished - Jan 1 2017
Event47th AIAA Fluid Dynamics Conference, 2017 - Denver, United States
Duration: Jun 5 2017Jun 9 2017

Publication series

Name47th AIAA Fluid Dynamics Conference, 2017

Other

Other47th AIAA Fluid Dynamics Conference, 2017
CountryUnited States
CityDenver
Period6/5/176/9/17

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Engineering (miscellaneous)

Fingerprint Dive into the research topics of 'Numerical simulation of plasma flows and radio-frequency blackout in atmospheric reentry demonstrator mission'. Together they form a unique fingerprint.

  • Cite this

    Jung, M., Kihara, H., Abe, K. I., & Takahashi, Y. (2017). Numerical simulation of plasma flows and radio-frequency blackout in atmospheric reentry demonstrator mission. In 47th AIAA Fluid Dynamics Conference, 2017 (47th AIAA Fluid Dynamics Conference, 2017). American Institute of Aeronautics and Astronautics Inc, AIAA.