Numerical study of effects of operation condition for oxygen blown coal gasifier in oxy-fuel IGCC

Kenji Tanno, Ahn Seongyool, Hiroaki Watanabe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In order to reduce CO2 emission from thermal power stations with keeping high thermal efficiency, a new concept of IGCC system, namely oxy-fuel IGCC, has been recently proposed. Hence CO2 is recycled in the system, the effect of CO2 recycle on eachequipments should be clarified. In this study, the effect of recycled CO2 injection on coal gasifier performance was investigated by means of three-dimensional RANS-based numerical simulation. For estimating of coal gasifier performance, coal gasification and water-gas shift reaction are key phenomena. Therefore, the partially active site sharing coal gasification model and detailed chemistry of watergas shift reaction model were implemented. Calculated gasifier was a commercial scale entrained flow coal gasifier whose coal feeding rate is 70 tons per hour. The gasifier consists of a lower combustor part and an upper reductor part. The effect of coal feeding rate into the reductor, R / T, was investigated. The results show that temperature in the combustor decreases with decreasing R/T. In the lower R/T condition, hence air ratio in the combustor decreases, the reducing atmosphere becomes stronger. As a result, coal gasification which is end othermic reaction in the combustor is promoted. Although coal gasification is occurred in the reductor in higher R/T condition, total coal gasification rate is not so promoted compared with lower R/T condition. Due to the above mechanism, the gasification performance becomes higher with decreasing R/T. The results obtained in this study indicate that it is important that how much the higher gasification reactivity in a gasifier is exploited by optimizing local heat balance.

Original languageEnglish
Title of host publicationBoilers and Heat Recovery Steam Generator; Combustion Turbines; Energy Water Sustainability; Fuels, Combustion and Material Handling; Heat Exchangers, Condensers, Cooling Systems, and Balance-of-Plant
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857601
DOIs
Publication statusPublished - Jan 1 2017
EventASME 2017 Power Conference Joint with ICOPE 2017, POWER 2017-ICOPE 2017, collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum - Charlotte, United States
Duration: Jun 26 2017Jun 30 2017

Publication series

NameAmerican Society of Mechanical Engineers, Power Division (Publication) POWER
Volume1

Other

OtherASME 2017 Power Conference Joint with ICOPE 2017, POWER 2017-ICOPE 2017, collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
CountryUnited States
CityCharlotte
Period6/26/176/30/17

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Energy Engineering and Power Technology

Cite this

Tanno, K., Seongyool, A., & Watanabe, H. (2017). Numerical study of effects of operation condition for oxygen blown coal gasifier in oxy-fuel IGCC. In Boilers and Heat Recovery Steam Generator; Combustion Turbines; Energy Water Sustainability; Fuels, Combustion and Material Handling; Heat Exchangers, Condensers, Cooling Systems, and Balance-of-Plant (American Society of Mechanical Engineers, Power Division (Publication) POWER; Vol. 1). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/POWER-ICOPE2017-3311