Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO3

Xubin Ye, Jianfa Zhao, Hena Das, Denis Sheptyakov, Junye Yang, Yuki Sakai, Hajime Hojo, Zhehong Liu, Long Zhou, Lipeng Cao, Takumi Nishikubo, Shogo Wakazaki, Cheng Dong, Xiao Wang, Zhiwei Hu, Hong Ji Lin, Chien Te Chen, Christoph Sahle, Anna Efiminko, Huibo CaoStuart Calder, Ko Mibu, Michel Kenzelmann, Liu Hao Tjeng, Runze Yu, Masaki Azuma, Changqing Jin, Youwen Long

Research output: Contribution to journalArticlepeer-review

Abstract

PbMO3 (M = 3d transition metals) family shows systematic variations in charge distribution and intriguing physical properties due to its delicate energy balance between Pb 6s and transition metal 3d orbitals. However, the detailed structure and physical properties of PbFeO3 remain unclear. Herein, we reveal that PbFeO3 crystallizes into an unusual 2ap × 6ap × 2ap orthorhombic perovskite super unit cell with space group Cmcm. The distinctive crystal construction and valence distribution of Pb2+0.5Pb4+0.5FeO3 lead to a long range charge ordering of the -A-B-B- type of the layers with two different oxidation states of Pb (Pb2+ and Pb4+) in them. A weak ferromagnetic transition with canted antiferromagnetic spins along the a-axis is found to occur at 600 K. In addition, decreasing the temperature causes a spin reorientation transition towards a collinear antiferromagnetic structure with spin moments along the b-axis near 418 K. Our theoretical investigations reveal that the peculiar charge ordering of Pb generates two Fe3+ magnetic sublattices with competing anisotropic energies, giving rise to the spin reorientation at such a high critical temperature.

Original languageEnglish
Article number1917
JournalNature communications
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO<sub>3</sub>'. Together they form a unique fingerprint.

Cite this