Observational constraints on dark radiation in brane cosmology

K. Ichiki, M. Yahiro, T. Kajino, M. Orito, G. J. Mathews

Research output: Contribution to journalArticle

Abstract

We analyze the observational constraints on brane-world cosmology whereby the universe is described as a three-brane embedded in a five-dimensional anti–de Sitter space. In this brane-universe cosmology, the Friedmann equation is modified by the appearance of extra terms which derive from the existence of the extra dimensions. In the present work we concentrate on the “dark radiation” term which diminishes with the cosmic scale factor as (Formula presented) We show that, although the observational constraints from primordial abundances allow only a small contribution when this term is positive, a much wider range of negative values is allowed. Furthermore, such a negative contribution can reconcile the tension between the observed primordial (Formula presented) and D abundances. We also discuss the possible constraints on this term from the power spectrum of CMB anisotropies in the limit of negligible cosmological perturbation on the brane world. We show that BBN limits the possible contribution from dark radiation just before the (Formula presented) annihilation epoch to lie between -123% and +11% of the background photon energy density. Combining this with the CMB constraint reduces this range to between -41% and +10.5% at the (Formula presented) confidence level.

Original languageEnglish
Number of pages1
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume66
Issue number4
DOIs
Publication statusPublished - Jan 1 2002

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Observational constraints on dark radiation in brane cosmology'. Together they form a unique fingerprint.

  • Cite this