On hydrogen-induced void nucleation and grain boundary decohesion in nickel-base alloys

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Experimental evidence indicates that nickel-base alloys fail in the presence of hydrogen by ductile intergranular fracture. The degradation mechanism involves void nucleation at grain boundary carbides and grain boundary decohesion. In this study, a micromechanical model is suggested to understand the interaction of void nucleation and growth with the failure of the grain boundaries. The analysis is carried out at a unit cell comprising an elastic particle imbedded in a ductile matrix, a grain boundary along a plane of symmetry of the cell, and loaded in plane strain perpendicularly to the grain boundary. A phenomenological model for hydrogen-induced decohesion calibrated at the fast-separation limit of the decohesion theory of Rice [1], Hirth and Rice [2], and Rice and Wang [3] was used to describe the hydrogen effect on the cohesive properties of the particle/matrix interface and grain boundary. The finite element results indicate that hydrogen embrittlement of the alloy 690 is controlled by hydrogen assisted void nucleation at the carbides. The effect of hydrogen on grain boundary cohesion is almost negligible. The grain boundary decohesion, which proceeds almost instantaneously upon initiation, is caused by normal stress elevation due to the interaction of the void with the applied load. Lastly evaluative statements are made on the quantitative effect of hydrogen on the fracture toughness of the alloy 690.

Original languageEnglish
Pages (from-to)368-377
Number of pages10
JournalJournal of Engineering Materials and Technology, Transactions of the ASME
Volume126
Issue number4
DOIs
Publication statusPublished - Oct 1 2004

Fingerprint

Nickel
voids
Hydrogen
Grain boundaries
Nucleation
grain boundaries
nickel
nucleation
hydrogen
rice
carbides
Carbides
hydrogen embrittlement
Hydrogen embrittlement
Ductile fracture
cohesion
plane strain
Crystal symmetry
matrices
fracture strength

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

@article{084ce77bee5042f3a4fdcf763db21da2,
title = "On hydrogen-induced void nucleation and grain boundary decohesion in nickel-base alloys",
abstract = "Experimental evidence indicates that nickel-base alloys fail in the presence of hydrogen by ductile intergranular fracture. The degradation mechanism involves void nucleation at grain boundary carbides and grain boundary decohesion. In this study, a micromechanical model is suggested to understand the interaction of void nucleation and growth with the failure of the grain boundaries. The analysis is carried out at a unit cell comprising an elastic particle imbedded in a ductile matrix, a grain boundary along a plane of symmetry of the cell, and loaded in plane strain perpendicularly to the grain boundary. A phenomenological model for hydrogen-induced decohesion calibrated at the fast-separation limit of the decohesion theory of Rice [1], Hirth and Rice [2], and Rice and Wang [3] was used to describe the hydrogen effect on the cohesive properties of the particle/matrix interface and grain boundary. The finite element results indicate that hydrogen embrittlement of the alloy 690 is controlled by hydrogen assisted void nucleation at the carbides. The effect of hydrogen on grain boundary cohesion is almost negligible. The grain boundary decohesion, which proceeds almost instantaneously upon initiation, is caused by normal stress elevation due to the interaction of the void with the applied load. Lastly evaluative statements are made on the quantitative effect of hydrogen on the fracture toughness of the alloy 690.",
author = "Y. Liang and Sofronis, {Petros Athanasios}",
year = "2004",
month = "10",
day = "1",
doi = "10.1115/1.1789954",
language = "English",
volume = "126",
pages = "368--377",
journal = "Journal of Engineering Materials and Technology, Transactions of the ASME",
issn = "0094-4289",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "4",

}

TY - JOUR

T1 - On hydrogen-induced void nucleation and grain boundary decohesion in nickel-base alloys

AU - Liang, Y.

AU - Sofronis, Petros Athanasios

PY - 2004/10/1

Y1 - 2004/10/1

N2 - Experimental evidence indicates that nickel-base alloys fail in the presence of hydrogen by ductile intergranular fracture. The degradation mechanism involves void nucleation at grain boundary carbides and grain boundary decohesion. In this study, a micromechanical model is suggested to understand the interaction of void nucleation and growth with the failure of the grain boundaries. The analysis is carried out at a unit cell comprising an elastic particle imbedded in a ductile matrix, a grain boundary along a plane of symmetry of the cell, and loaded in plane strain perpendicularly to the grain boundary. A phenomenological model for hydrogen-induced decohesion calibrated at the fast-separation limit of the decohesion theory of Rice [1], Hirth and Rice [2], and Rice and Wang [3] was used to describe the hydrogen effect on the cohesive properties of the particle/matrix interface and grain boundary. The finite element results indicate that hydrogen embrittlement of the alloy 690 is controlled by hydrogen assisted void nucleation at the carbides. The effect of hydrogen on grain boundary cohesion is almost negligible. The grain boundary decohesion, which proceeds almost instantaneously upon initiation, is caused by normal stress elevation due to the interaction of the void with the applied load. Lastly evaluative statements are made on the quantitative effect of hydrogen on the fracture toughness of the alloy 690.

AB - Experimental evidence indicates that nickel-base alloys fail in the presence of hydrogen by ductile intergranular fracture. The degradation mechanism involves void nucleation at grain boundary carbides and grain boundary decohesion. In this study, a micromechanical model is suggested to understand the interaction of void nucleation and growth with the failure of the grain boundaries. The analysis is carried out at a unit cell comprising an elastic particle imbedded in a ductile matrix, a grain boundary along a plane of symmetry of the cell, and loaded in plane strain perpendicularly to the grain boundary. A phenomenological model for hydrogen-induced decohesion calibrated at the fast-separation limit of the decohesion theory of Rice [1], Hirth and Rice [2], and Rice and Wang [3] was used to describe the hydrogen effect on the cohesive properties of the particle/matrix interface and grain boundary. The finite element results indicate that hydrogen embrittlement of the alloy 690 is controlled by hydrogen assisted void nucleation at the carbides. The effect of hydrogen on grain boundary cohesion is almost negligible. The grain boundary decohesion, which proceeds almost instantaneously upon initiation, is caused by normal stress elevation due to the interaction of the void with the applied load. Lastly evaluative statements are made on the quantitative effect of hydrogen on the fracture toughness of the alloy 690.

UR - http://www.scopus.com/inward/record.url?scp=12344332615&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=12344332615&partnerID=8YFLogxK

U2 - 10.1115/1.1789954

DO - 10.1115/1.1789954

M3 - Article

AN - SCOPUS:12344332615

VL - 126

SP - 368

EP - 377

JO - Journal of Engineering Materials and Technology, Transactions of the ASME

JF - Journal of Engineering Materials and Technology, Transactions of the ASME

SN - 0094-4289

IS - 4

ER -