On-line tracking of living cell subjected to cyclic stretch

Wenjing Huang, Belal Ahmad, Tomohiro Kawahara

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

We propose a novel system for the observation of living cell exposed to cyclic stretch under dynamic conditions. The developed system is mainly composed of a laptop PC, a stretching unit with three motorized stages, and a microscope with a CCD camera. The design of the cell tracking system is based on the deformation characteristics of the elastic chamber and its performance was confirmed through the basic experiments. Finally, we succeeded in on-line imaging of living single cells under the microscope with a high magnification ratio. We believe that the developed system is a promising platform for studying the immediate responses of cells exposed to cyclic stretch.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3553-3556
Number of pages4
ISBN (Electronic)9781424492718
DOIs
Publication statusPublished - Nov 4 2015
Externally publishedYes
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: Aug 25 2015Aug 29 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Other

Other37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period8/25/158/29/15

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'On-line tracking of living cell subjected to cyclic stretch'. Together they form a unique fingerprint.

Cite this