On lusternik-schnirelmann category of SO(10)

Norio Iwase, Kai Kikuchi, Toshiyuki Miyauchi

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA0 for some A0. Let {Ki → Fi-1↪ Fi

Original languageEnglish
Pages (from-to)201-227
Number of pages27
JournalFundamenta Mathematicae
Volume234
Issue number3
DOIs
Publication statusPublished - Jan 1 2016

Fingerprint

Lusternik-Schnirelmann Category
Analytic group
Bundle

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

On lusternik-schnirelmann category of SO(10). / Iwase, Norio; Kikuchi, Kai; Miyauchi, Toshiyuki.

In: Fundamenta Mathematicae, Vol. 234, No. 3, 01.01.2016, p. 201-227.

Research output: Contribution to journalArticle

Iwase, Norio ; Kikuchi, Kai ; Miyauchi, Toshiyuki. / On lusternik-schnirelmann category of SO(10). In: Fundamenta Mathematicae. 2016 ; Vol. 234, No. 3. pp. 201-227.
@article{273185fc294640f0ab10af2529b8dd22,
title = "On lusternik-schnirelmann category of SO(10)",
abstract = "Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA0 for some A0. Let {Ki → Fi-1↪ Fi",
author = "Norio Iwase and Kai Kikuchi and Toshiyuki Miyauchi",
year = "2016",
month = "1",
day = "1",
doi = "10.4064/fm678-11-2015",
language = "English",
volume = "234",
pages = "201--227",
journal = "Fundamenta Mathematicae",
issn = "0016-2736",
publisher = "Instytut Matematyczny",
number = "3",

}

TY - JOUR

T1 - On lusternik-schnirelmann category of SO(10)

AU - Iwase, Norio

AU - Kikuchi, Kai

AU - Miyauchi, Toshiyuki

PY - 2016/1/1

Y1 - 2016/1/1

N2 - Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA0 for some A0. Let {Ki → Fi-1↪ Fi

AB - Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA0 for some A0. Let {Ki → Fi-1↪ Fi

UR - http://www.scopus.com/inward/record.url?scp=84978923846&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84978923846&partnerID=8YFLogxK

U2 - 10.4064/fm678-11-2015

DO - 10.4064/fm678-11-2015

M3 - Article

AN - SCOPUS:84978923846

VL - 234

SP - 201

EP - 227

JO - Fundamenta Mathematicae

JF - Fundamenta Mathematicae

SN - 0016-2736

IS - 3

ER -