TY - GEN
T1 - On material qualification and strength design for hydrogen service
AU - Yamabe, Junichiro
AU - Matsunaga, Hisao
AU - Furuya, Yoshiyuki
AU - Matsuoka, Saburo
PY - 2015
Y1 - 2015
N2 - To clarify the usefulness of the safety factor multiplier method for hydrogen components given in the CHMC1-2014 standard, we performed slow-strain-rate tensile and fatigue testing by using smooth and notched specimens in air and in high-pressure hydrogen gas. We also conducted fatigue-crack growth tests by using compact tension specimens in air and in hydrogen gas. Testing of notched specimens sampled from a Cr-Mo steel gave a safety factor multiplier of 3.0. This value agreed well with that predicted by crack growth analysis taking into account hydrogen-enhanced fatigue-crack growth. The safety factor multipliers of types 304, 316, and 316L austenitic stainless steels were predicted to be 2.0, 1.6, and 1.3, respectively, from their fatigue-crack growth behaviors. The safety factor based on the safety factor multiplier method seems to be overly conservative for the various steels in high-pressure hydrogen gas service. We therefore propose a new and promising design method for specific component applications that is based on design by rule and design by analysis. The importance of operational histories of components for hydrogen service is introduced to permit the precise prediction of their fatigue lives.
AB - To clarify the usefulness of the safety factor multiplier method for hydrogen components given in the CHMC1-2014 standard, we performed slow-strain-rate tensile and fatigue testing by using smooth and notched specimens in air and in high-pressure hydrogen gas. We also conducted fatigue-crack growth tests by using compact tension specimens in air and in hydrogen gas. Testing of notched specimens sampled from a Cr-Mo steel gave a safety factor multiplier of 3.0. This value agreed well with that predicted by crack growth analysis taking into account hydrogen-enhanced fatigue-crack growth. The safety factor multipliers of types 304, 316, and 316L austenitic stainless steels were predicted to be 2.0, 1.6, and 1.3, respectively, from their fatigue-crack growth behaviors. The safety factor based on the safety factor multiplier method seems to be overly conservative for the various steels in high-pressure hydrogen gas service. We therefore propose a new and promising design method for specific component applications that is based on design by rule and design by analysis. The importance of operational histories of components for hydrogen service is introduced to permit the precise prediction of their fatigue lives.
UR - http://www.scopus.com/inward/record.url?scp=84956966877&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84956966877&partnerID=8YFLogxK
U2 - 10.1115/PVP201545723
DO - 10.1115/PVP201545723
M3 - Conference contribution
AN - SCOPUS:84956966877
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Materials and Fabrication
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 Pressure Vessels and Piping Conference, PVP 2015
Y2 - 19 July 2015 through 23 July 2015
ER -