On reformation of quasi-perpendicular collisionless shocks

Shuichi Matsukiyo, Manfred Scholer

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

We review recent studies on mass ratio dependence of self-reformation of high Mach number, low β, highly oblique quasi-perpendicular shocks by Scholer et al. (Scholer, M., Shinohara, I., Matsukiyo, S. Quasi-perpendicular shocks: length scale of the cross-shock potential, shock reformation, and implication for shock surfing, J. Geophys. Res., 108, 1014, doi:10.1029/2002JA009515, 2003.), Matsukiyo and Scholer (Matsukiyo, S., Scholer, M. Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks, J. Geophys. Res., 108, 1459, doi:10.1029/2003JA10080, 2003.), and Scholer and Matsukiyo (Scholer, M., Matsukiyo, S. Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio, Ann. Geophys., in press, 2004.). A one-dimensional full particle simulation code is utilized. In small ion to electron mass ratio runs, reformation is due to the accumulation of gyrating reflected ions at the upstream edge of the foot. Furthermore, at an extremely small mass ratio, the Buneman instability is generated in the foot. In the realistic mass ratio run, however, the modified two-stream instability excited in the foot plays an important role in a shock reformation process.

Original languageEnglish
Pages (from-to)57-63
Number of pages7
JournalAdvances in Space Research
Volume38
Issue number1
DOIs
Publication statusPublished - Jan 1 2006
Externally publishedYes

Fingerprint

shock
Mach number
mass ratios
Ions
Electrons
ion
electron mass
electron
simulation
ions
upstream
particle

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Geophysics
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences(all)

Cite this

On reformation of quasi-perpendicular collisionless shocks. / Matsukiyo, Shuichi; Scholer, Manfred.

In: Advances in Space Research, Vol. 38, No. 1, 01.01.2006, p. 57-63.

Research output: Contribution to journalArticle

@article{8637313543f54eff91e01f79c4f4403d,
title = "On reformation of quasi-perpendicular collisionless shocks",
abstract = "We review recent studies on mass ratio dependence of self-reformation of high Mach number, low β, highly oblique quasi-perpendicular shocks by Scholer et al. (Scholer, M., Shinohara, I., Matsukiyo, S. Quasi-perpendicular shocks: length scale of the cross-shock potential, shock reformation, and implication for shock surfing, J. Geophys. Res., 108, 1014, doi:10.1029/2002JA009515, 2003.), Matsukiyo and Scholer (Matsukiyo, S., Scholer, M. Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks, J. Geophys. Res., 108, 1459, doi:10.1029/2003JA10080, 2003.), and Scholer and Matsukiyo (Scholer, M., Matsukiyo, S. Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio, Ann. Geophys., in press, 2004.). A one-dimensional full particle simulation code is utilized. In small ion to electron mass ratio runs, reformation is due to the accumulation of gyrating reflected ions at the upstream edge of the foot. Furthermore, at an extremely small mass ratio, the Buneman instability is generated in the foot. In the realistic mass ratio run, however, the modified two-stream instability excited in the foot plays an important role in a shock reformation process.",
author = "Shuichi Matsukiyo and Manfred Scholer",
year = "2006",
month = "1",
day = "1",
doi = "10.1016/j.asr.2004.08.012",
language = "English",
volume = "38",
pages = "57--63",
journal = "Advances in Space Research",
issn = "0273-1177",
publisher = "Elsevier Limited",
number = "1",

}

TY - JOUR

T1 - On reformation of quasi-perpendicular collisionless shocks

AU - Matsukiyo, Shuichi

AU - Scholer, Manfred

PY - 2006/1/1

Y1 - 2006/1/1

N2 - We review recent studies on mass ratio dependence of self-reformation of high Mach number, low β, highly oblique quasi-perpendicular shocks by Scholer et al. (Scholer, M., Shinohara, I., Matsukiyo, S. Quasi-perpendicular shocks: length scale of the cross-shock potential, shock reformation, and implication for shock surfing, J. Geophys. Res., 108, 1014, doi:10.1029/2002JA009515, 2003.), Matsukiyo and Scholer (Matsukiyo, S., Scholer, M. Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks, J. Geophys. Res., 108, 1459, doi:10.1029/2003JA10080, 2003.), and Scholer and Matsukiyo (Scholer, M., Matsukiyo, S. Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio, Ann. Geophys., in press, 2004.). A one-dimensional full particle simulation code is utilized. In small ion to electron mass ratio runs, reformation is due to the accumulation of gyrating reflected ions at the upstream edge of the foot. Furthermore, at an extremely small mass ratio, the Buneman instability is generated in the foot. In the realistic mass ratio run, however, the modified two-stream instability excited in the foot plays an important role in a shock reformation process.

AB - We review recent studies on mass ratio dependence of self-reformation of high Mach number, low β, highly oblique quasi-perpendicular shocks by Scholer et al. (Scholer, M., Shinohara, I., Matsukiyo, S. Quasi-perpendicular shocks: length scale of the cross-shock potential, shock reformation, and implication for shock surfing, J. Geophys. Res., 108, 1014, doi:10.1029/2002JA009515, 2003.), Matsukiyo and Scholer (Matsukiyo, S., Scholer, M. Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks, J. Geophys. Res., 108, 1459, doi:10.1029/2003JA10080, 2003.), and Scholer and Matsukiyo (Scholer, M., Matsukiyo, S. Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio, Ann. Geophys., in press, 2004.). A one-dimensional full particle simulation code is utilized. In small ion to electron mass ratio runs, reformation is due to the accumulation of gyrating reflected ions at the upstream edge of the foot. Furthermore, at an extremely small mass ratio, the Buneman instability is generated in the foot. In the realistic mass ratio run, however, the modified two-stream instability excited in the foot plays an important role in a shock reformation process.

UR - http://www.scopus.com/inward/record.url?scp=33748046182&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748046182&partnerID=8YFLogxK

U2 - 10.1016/j.asr.2004.08.012

DO - 10.1016/j.asr.2004.08.012

M3 - Article

AN - SCOPUS:33748046182

VL - 38

SP - 57

EP - 63

JO - Advances in Space Research

JF - Advances in Space Research

SN - 0273-1177

IS - 1

ER -