On the dynamic model and motion planning for a class of spherical rolling robots

Mikhail Svinin, Akihiro Morinaga, Motoji Yamamoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Citations (Scopus)

Abstract

The paper deals with the dynamics and motion planning for a spherical rolling robot actuated by internal rotors that are placed on orthogonal axes. The driving principle for such a robot exploits non-holonomic constraints to propel the rolling carrier. The full mathematical model as well as its reduced version are derived, and the inverse dynamics is addressed. It is shown that if the rotors are mounted on three orthogonal axes, any feasible kinematic trajectory of the rolling robot is dynamically realizable. For the case of only two orthogonal axes of the actuation the condition of dynamic realizability of a feasible kinematic trajectory is established. The implication of this condition to motion planning in dynamic formulation is explored under a case study. It is shown there that in maneuvering the robot by tracing circles on the sphere surface the dynamically realizable trajectories are essentially different from those resulted from kinematic models.

Original languageEnglish
Title of host publication2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3226-3231
Number of pages6
ISBN (Print)9781467314039
DOIs
Publication statusPublished - Jan 1 2012
Event 2012 IEEE International Conference on Robotics and Automation, ICRA 2012 - Saint Paul, MN, United States
Duration: May 14 2012May 18 2012

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
CountryUnited States
CitySaint Paul, MN
Period5/14/125/18/12

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'On the dynamic model and motion planning for a class of spherical rolling robots'. Together they form a unique fingerprint.

Cite this