On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles

Dongshuang Wu, Kohei Kusada, Tomokazu Yamamoto, Takaaki Toriyama, Syo Matsumura, Ibrahima Gueye, Okkyun Seo, Jaemyung Kim, Satoshi Hiroi, Osami Sakata, Shogo Kawaguchi, Yoshiki Kubota, Hiroshi Kitagawa

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

We report the synthesis of high-entropy-alloy (HEA) nanoparticles (NPs) consisting of five platinum group metals (Ru, Rh, Pd, Ir and Pt) through a facile one-pot polyol process. We investigated the electronic structure of HEA NPs using hard X-ray photoelectron spectroscopy, which is the first direct observation of the electronic structure of HEA NPs. Significantly, the HEA NPs possessed a broad valence band spectrum without any obvious peaks. This implies that the HEA NPs have random atomic configurations leading to a variety of local electronic structures. We examined the hydrogen evolution reaction (HER) and observed a remarkably high HER activity on HEA NPs. At an overpotential of 25 mV, the turnover frequencies of HEA NPs were 9.5 and 7.8 times higher than those of a commercial Pt catalyst in 0.05 M H2SO4 and 1.0 M KOH electrolytes, respectively. Moreover, the HEA NPs showed almost no loss during a cycling test and were much more stable than the commercial Pt catalyst. Our findings on HEA NPs may provide a new paradigm for the design of catalysts.

Original languageEnglish
Pages (from-to)12731-12736
Number of pages6
JournalChemical Science
Volume11
Issue number47
DOIs
Publication statusPublished - Dec 21 2020

All Science Journal Classification (ASJC) codes

  • Chemistry(all)

Fingerprint Dive into the research topics of 'On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles'. Together they form a unique fingerprint.

Cite this