On the onset of quench during spray cooling: The significance of oxide layers

Kengo Tsukamoto, Yutaku Kita, Shinya Inoue, Takafumi Hamanosono, Sumitomo Hidaka, Satoshi Ueoka, Hiroyuki Fukuda, Masamichi Kohno, Yasuyuki Takata

Research output: Contribution to journalArticle

Abstract

The effect of thermally-insulating layer, particularly oxide layer as found in metallurgical applications, on the water spray-cooling process was discussed. Such layers have been found to increase the quenching temperature at which the sprayed liquid begins to contact the hot surface, greatly increasing the cooling rate. The conventional, thermal-resistance based model can predict the shift of the quenching point qualitatively, albeit significant deviations remain due to the lack of fundamental understanding of the onset of liquid–solid contact. In the present paper, we conducted two sets of experiments in an attempt to shed light on the quench mechanism and the effect of oxide layer. First, we compared temperature histories during spray cooling of a stainless-steel plate with various oxide layers. The quench temperatures varied depending both on the composition and the thickness of the oxide layer. Additionally, quench was observed at temperatures as high as 350 °C, exceeding the thermodynamic wetting limit. Then, we moved on to single droplet impingement experiments to investigate the change of droplet behavior with respect to the surface temperature in detail. High-speed imaging allowed us to identify the transition of droplet impact behavior i.e. deposition and bouncing, which also occurred at different wall temperatures depending on the composition of oxide layer. Subsequently, we calculated the contact surface temperature assuming the transient heat conduction for a contact between two semi-finite bodies. As a consequence, the onset of droplet behavior transition was always found at the contact surface temperature of ca. 250 °C regardless of the composition and thickness of the oxide layer. The difference between the contact surface temperature and the wall temperature increased as the thermal effusivity of the oxide layer decreased, which was a direct cause of the inconsistent “apparent” quenching temperature.

Original languageEnglish
Article number115682
JournalApplied Thermal Engineering
Volume179
DOIs
Publication statusPublished - Oct 2020

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'On the onset of quench during spray cooling: The significance of oxide layers'. Together they form a unique fingerprint.

  • Cite this