Optical bandgap energy of Si nanoparticle composite films deposited by a multi-hollow discharge plasma chemical vapor deposition method

Susumu Toko, Yoshinori Kanemitsu, Hyunwoong Seo, Naho Itagaki, Kazunori Koga, Masaharu Shiratani

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Semiconductor nanoparticles have significant potential for optoelectronic applications such as solar cells and light-emitting diodes. We are developing semiconductor nanoparticle composite films with a wide bandgap to be used as the window layer of solar cells because the bandgap energy increases with a decrease in the size of particles in the nanometer size range due to the quantum size effect. A multi-hollow discharge plasma chemical vapor deposition (CVD) method was used to fabricate Si nanoparticle composite films and control the volume fraction of nanoparticles in the films. The bandgap energy was increased from 2 eV for a crystalline volume fraction Xc of 0.2 to 2.5 eV for Xc = 0.6 and then decreased to 1.1 eV for Xc = 1. The photo and dark conductivity of films indicate high stability against light soaking. Si nanoparticle composite films with bandgap energies above 2.2 eV are thus promising candidate materials for the window layer of thin-film solar cells.

Original languageEnglish
Pages (from-to)10753-10757
Number of pages5
JournalJournal of nanoscience and nanotechnology
Volume16
Issue number10
DOIs
Publication statusPublished - Oct 2016

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Biomedical Engineering
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Optical bandgap energy of Si nanoparticle composite films deposited by a multi-hollow discharge plasma chemical vapor deposition method'. Together they form a unique fingerprint.

Cite this