TY - GEN
T1 - Optimization of adsorption isotherm taxonomy for open-cycle desiccant air-conditioning applications
AU - Sultan, Muhammad
AU - Miyazaki, Takahiko
AU - Saha, Bidyut B.
AU - Koyama, Shigeru
PY - 2015
Y1 - 2015
N2 - Water vapor adsorption isotherm taxonomy of silica-gel based type-linear (fictitious), and four adsorbents enabling type-I, II, III, and V isotherms by means of International Union of Pure and Applied Chemistry (IUPAC) classification, are studied for desiccant air-conditioning (AC) applications. Ideal temperature and humidity zones for various AC applications are drawn on psychometric charts. Published adsorption data for studied adsorbents are fitted with the appropriate adsorption models. Ideal desiccant AC cycle is evaluated for AC applications and steady-state cycled moisture is estimated by means of adsorption isobars. Typelinear adsorption isotherm gives the maximum steady-state dehumidification performance for AC in industrial processes of matches manufacturing/drying/storage, rubber dipped goods storage, and photo studio drying room. However, adsorbents enabling type-V isotherm are found the optimum adsorbents for tobacco stemming/stripping/softening and optical lenses grinding. For industrial process-dipped surgical articles; adsorbents enabling type-I, type-II, and type-linear isotherms are resulted the optimum adsorbents under conditions of low (< 68°C), medium (68°C-87°C), and high (> 87°C) temperature regeneration, respectively.
AB - Water vapor adsorption isotherm taxonomy of silica-gel based type-linear (fictitious), and four adsorbents enabling type-I, II, III, and V isotherms by means of International Union of Pure and Applied Chemistry (IUPAC) classification, are studied for desiccant air-conditioning (AC) applications. Ideal temperature and humidity zones for various AC applications are drawn on psychometric charts. Published adsorption data for studied adsorbents are fitted with the appropriate adsorption models. Ideal desiccant AC cycle is evaluated for AC applications and steady-state cycled moisture is estimated by means of adsorption isobars. Typelinear adsorption isotherm gives the maximum steady-state dehumidification performance for AC in industrial processes of matches manufacturing/drying/storage, rubber dipped goods storage, and photo studio drying room. However, adsorbents enabling type-V isotherm are found the optimum adsorbents for tobacco stemming/stripping/softening and optical lenses grinding. For industrial process-dipped surgical articles; adsorbents enabling type-I, type-II, and type-linear isotherms are resulted the optimum adsorbents under conditions of low (< 68°C), medium (68°C-87°C), and high (> 87°C) temperature regeneration, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85016711758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016711758&partnerID=8YFLogxK
U2 - 10.18462/iir.icr.2015.0516
DO - 10.18462/iir.icr.2015.0516
M3 - Conference contribution
AN - SCOPUS:85016711758
T3 - Refrigeration Science and Technology
SP - 3001
EP - 3008
BT - 24th IIR International Congress of Refrigeration, ICR 2015
PB - International Institute of Refrigeration
T2 - 24th IIR International Congress of Refrigeration, ICR 2015
Y2 - 16 August 2015 through 22 August 2015
ER -