Optimization of hexadecylpyridinium-modified montmorillonite for removal of perchlorate based on adsorption mechanisms

Wuhui Luo, Tsuyoshi Hirajima, Keiko Sasaki

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Adsorption of perchlorate (ClO4-) onto hexadecylpyridinium-modified montmorillonite (OMt) was investigated by in situ and ex situ methods. For the in situ method, ClO4- was initially bound by hexadecylpyridinium (HDPy+) in the form of HDPy-ClO4 which together with the excess HDPy+ were simultaneously captured by Mt. The ex situ strategy was performed by adding synthesized OMt into ClO4--bearing solution, where conventionally dried OMt (II-OMt) and innovative OMt (I-OMt) without drying and washing procedure were compared as adsorbents. The adsorption capacity of ClO4- and amount of HDPy released into equilibrium solution were evaluated, where surfactant release was rarely addressed in previous publications. I-OMt showed relatively high adsorption capacity of ClO4- and negligible release of HDPy. The lower adsorption capacity of ClO4- onto II-OMt was caused by the washing procedure which removed the unstably anchored HDPy. Inhibition of HDPy release of I-OMt was explained by reconfiguration of HDPy after ClO4- adsorption as supported by results of X-ray diffraction and attenuated total reflection Fourier transform infrared spectroscopy. In addition, for anion adsorption onto conventionally synthesized OMt, the difference between the amounts of released counter ion and that of entrapped target anion is generally ignored. Such phenomenon was critically considered in this study, and the results showed that the difference between adsorbed ClO4- and released Cl- decreased with an increase of HDPy loading and was more significant in I-OMt. This is rationalized by the desorption of HDPy+ and formation of HDPy-ClO4 according to the results of 13C nuclear magnetic resonance spectra and the adsorption energy evaluated by the Dubinin-Radushkevich model.

Original languageEnglish
Pages (from-to)29-36
Number of pages8
JournalApplied Clay Science
Volume123
DOIs
Publication statusPublished - Apr 1 2016

All Science Journal Classification (ASJC) codes

  • Geology
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Optimization of hexadecylpyridinium-modified montmorillonite for removal of perchlorate based on adsorption mechanisms'. Together they form a unique fingerprint.

Cite this