Optimized quantization and scaling of layered LDPC scaled min-sum decoder

Ahmed A. Emran, Maha Elsabrouty, Osamu Muta, Hiroshi Furukawa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this paper, we apply an efficient scaling strategy on layered scaled min-sum LDPC decoder. In addition, we propose a joint optimization strategy for the quantization and scaling parameters of layered scaled min-sum LDPC decoder. The study of our optimization results, for DVB-S2 LDPC codes with different constellation sizes and code rates, shows that each constellation size code rate pair has different optimal scaling and quantization parameters. In order to maximize the achievable performance, we propose using the different scaling and quantization parameters for each constellation size code rate pair. The simulation results show the performance improvement of separately using optimal scaling parameters or optimal quantization parameters, and the overall performance enhancement of using both optimal scaling and quantization parameters.

Original languageEnglish
Title of host publicationProceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2668-2672
Number of pages5
ISBN (Electronic)9781467377041
DOIs
Publication statusPublished - Sep 28 2015
EventIEEE International Symposium on Information Theory, ISIT 2015 - Hong Kong, Hong Kong
Duration: Jun 14 2015Jun 19 2015

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2015-June
ISSN (Print)2157-8095

Other

OtherIEEE International Symposium on Information Theory, ISIT 2015
CountryHong Kong
CityHong Kong
Period6/14/156/19/15

Fingerprint

Quantization
Scaling
Optimal Scaling
LDPC Codes
Optimization
Enhancement
Maximise
Simulation
Strategy

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Cite this

Emran, A. A., Elsabrouty, M., Muta, O., & Furukawa, H. (2015). Optimized quantization and scaling of layered LDPC scaled min-sum decoder. In Proceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015 (pp. 2668-2672). [7282940] (IEEE International Symposium on Information Theory - Proceedings; Vol. 2015-June). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2015.7282940

Optimized quantization and scaling of layered LDPC scaled min-sum decoder. / Emran, Ahmed A.; Elsabrouty, Maha; Muta, Osamu; Furukawa, Hiroshi.

Proceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015. Institute of Electrical and Electronics Engineers Inc., 2015. p. 2668-2672 7282940 (IEEE International Symposium on Information Theory - Proceedings; Vol. 2015-June).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Emran, AA, Elsabrouty, M, Muta, O & Furukawa, H 2015, Optimized quantization and scaling of layered LDPC scaled min-sum decoder. in Proceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015., 7282940, IEEE International Symposium on Information Theory - Proceedings, vol. 2015-June, Institute of Electrical and Electronics Engineers Inc., pp. 2668-2672, IEEE International Symposium on Information Theory, ISIT 2015, Hong Kong, Hong Kong, 6/14/15. https://doi.org/10.1109/ISIT.2015.7282940
Emran AA, Elsabrouty M, Muta O, Furukawa H. Optimized quantization and scaling of layered LDPC scaled min-sum decoder. In Proceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015. Institute of Electrical and Electronics Engineers Inc. 2015. p. 2668-2672. 7282940. (IEEE International Symposium on Information Theory - Proceedings). https://doi.org/10.1109/ISIT.2015.7282940
Emran, Ahmed A. ; Elsabrouty, Maha ; Muta, Osamu ; Furukawa, Hiroshi. / Optimized quantization and scaling of layered LDPC scaled min-sum decoder. Proceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015. Institute of Electrical and Electronics Engineers Inc., 2015. pp. 2668-2672 (IEEE International Symposium on Information Theory - Proceedings).
@inproceedings{979c140589be45c7a1c357f223ed0177,
title = "Optimized quantization and scaling of layered LDPC scaled min-sum decoder",
abstract = "In this paper, we apply an efficient scaling strategy on layered scaled min-sum LDPC decoder. In addition, we propose a joint optimization strategy for the quantization and scaling parameters of layered scaled min-sum LDPC decoder. The study of our optimization results, for DVB-S2 LDPC codes with different constellation sizes and code rates, shows that each constellation size code rate pair has different optimal scaling and quantization parameters. In order to maximize the achievable performance, we propose using the different scaling and quantization parameters for each constellation size code rate pair. The simulation results show the performance improvement of separately using optimal scaling parameters or optimal quantization parameters, and the overall performance enhancement of using both optimal scaling and quantization parameters.",
author = "Emran, {Ahmed A.} and Maha Elsabrouty and Osamu Muta and Hiroshi Furukawa",
year = "2015",
month = "9",
day = "28",
doi = "10.1109/ISIT.2015.7282940",
language = "English",
series = "IEEE International Symposium on Information Theory - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "2668--2672",
booktitle = "Proceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015",
address = "United States",

}

TY - GEN

T1 - Optimized quantization and scaling of layered LDPC scaled min-sum decoder

AU - Emran, Ahmed A.

AU - Elsabrouty, Maha

AU - Muta, Osamu

AU - Furukawa, Hiroshi

PY - 2015/9/28

Y1 - 2015/9/28

N2 - In this paper, we apply an efficient scaling strategy on layered scaled min-sum LDPC decoder. In addition, we propose a joint optimization strategy for the quantization and scaling parameters of layered scaled min-sum LDPC decoder. The study of our optimization results, for DVB-S2 LDPC codes with different constellation sizes and code rates, shows that each constellation size code rate pair has different optimal scaling and quantization parameters. In order to maximize the achievable performance, we propose using the different scaling and quantization parameters for each constellation size code rate pair. The simulation results show the performance improvement of separately using optimal scaling parameters or optimal quantization parameters, and the overall performance enhancement of using both optimal scaling and quantization parameters.

AB - In this paper, we apply an efficient scaling strategy on layered scaled min-sum LDPC decoder. In addition, we propose a joint optimization strategy for the quantization and scaling parameters of layered scaled min-sum LDPC decoder. The study of our optimization results, for DVB-S2 LDPC codes with different constellation sizes and code rates, shows that each constellation size code rate pair has different optimal scaling and quantization parameters. In order to maximize the achievable performance, we propose using the different scaling and quantization parameters for each constellation size code rate pair. The simulation results show the performance improvement of separately using optimal scaling parameters or optimal quantization parameters, and the overall performance enhancement of using both optimal scaling and quantization parameters.

UR - http://www.scopus.com/inward/record.url?scp=84969795011&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84969795011&partnerID=8YFLogxK

U2 - 10.1109/ISIT.2015.7282940

DO - 10.1109/ISIT.2015.7282940

M3 - Conference contribution

AN - SCOPUS:84969795011

T3 - IEEE International Symposium on Information Theory - Proceedings

SP - 2668

EP - 2672

BT - Proceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015

PB - Institute of Electrical and Electronics Engineers Inc.

ER -